Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meilenstein auf dem Weg zur Erzeugung von quantenmechanisch verschränkten Elektronen

10.10.2012
In der Quantenphysik können zwei Teilchen in sogenannten verschränkten Zuständen auftreten, die zentral in der Quanteninformationsverarbeitung sind.

Die Forschungsgruppe von Professor Christian Schönenberger an der Universität Basel hat nun erstmals gezeigt, dass eine Quelle für verschränkte Elektronen mit grosser Ausbeute möglich ist, was essentiell für weiterführende Experimente ist. Die Resultate wurden kürzlich in der Fachzeitschrift «Physical Review Letters» publiziert.


Quelle für verschränkte Elektronen mit einem Kohlenstoff-Nanoröhrchen (CNT) als zentralem Element. Foto: Universität Basel

Unsere Alltagserfahrung lässt uns oft im Stich, wenn es darum geht, quantenphysikalische Phänomene zu verstehen. So nehmen wir gemeinhin zwei räumlich getrennte Teilchen als eigenständige Objekte wahr. In der Quantenmechanik existiert jedoch das Phänomen der Verschränkung, bei dem zwei Teilchen nicht als einzelne Objekte, sondern nur zusammen zu verstehen sind – unabhängig von der Distanz zwischen ihnen.

Natürliche Quelle von verschränkten Elektronen

Schon Albert Einstein hatte erkannt, dass zwei Teilchen auf so mysteriöse Weise über grosse Distanzen verbunden sein können und nannte dies skeptisch «spukhafte Fernwirkung». Seither wurde quantenmechanische Verschränkung mehrfach nachgewiesen, was von grösster Bedeutung für die moderne Physik ist.

Obwohl für Lichtteilchen (Photonen) Verschränkung schon vor einiger Zeit gezeigt wurde, war die Kontrolle darüber minim. Für Elektronen wird die Verschränkung zusätzlich erschwert durch ihre Ladung und der dadurch auftretenden Wechselwirkungen. Den Physikern Jens Schindele und Dr. Andreas Baumgartner in der Forschungsgruppe von Prof. Christian Schönenberger an der Universität Basel ist es nun erstmals gelungen, eine hohe Ausbeute in einem Prozess zu erreichen, der verschränkte Elektronen generiert. Als Quelle diente den Forschern ein Supraleiter, in dem je zwei Elektronen sogenannte Cooper-Paare bilden. Diese sind zum Beispiel für das Verschwinden des elektrischen Widerstandes in Supraleitern verantwortlich. Wichtig hier ist, dass Elektronen in einem Cooper-Paar verschränkt sind und daher eine natürlich Quelle solcher Zustände bildet.

Kontrollierte Paar Aufspaltung möglich

Um nun die Elektronen eines Cooper-Paars räumlich zu trennen, verwendeten die Forscher zwei getrennte Quantenpunkte aus Kohlenstoff-Nanoröhrchen, durch die jeweils ein elektrischer Strom aus dem Supraleiter geleitet wird. Ein Quantenpunkt ist eine nanoelektronische Struktur, die nur ein Elektron auf einmal durchlässt. Da es im Idealfall keine einzelnen Elektronen in einem Supraleiter geben darf, können Elektronen den Supraleiter nur verlassen, wenn ein Cooper-Paar aufbricht und die zwei Elektronen sich trennen. Somit stehen den Wissenschaftlern räumlich getrennte Paare verschränkter Elektronen zur Verfügung. Zudem wird aus dem ursprünglichen Nachteil, dass Elektronen eine elektrische Ladung besitzen, ein Vorteil, indem das Aufbrechen der Cooper-Paare elektrisch kontrolliert werden kann.

Das Prinzip dieser Cooper-Paar Aufspaltung wurde von derselben Forschungsgruppe schon früher gezeigt, jedoch mit sehr geringer Ausbeute. Neu konnte das Verhalten der Elektronen auf den Quantenpunkten untersucht und die resultierenden Ströme verglichen werden. Das Resultat, dass fast alle der austretenden Elektronen aus aufgespaltenen Cooper-Paaren stammen können, ebnet den Weg, verschränkte Elektronen als Fundament einer neuen Art der Informationsverarbeitung zu verwenden, zum Beispiel in einem Quantencomputer.

Originalbeitrag
J. Schindele, A. Baumgartner, and C. Schönenberger
Near-Unity Cooper Pair Splitting Efficiency
Phys. Rev. Lett. 109, 157002 (2012) | doi: 10.1103/PhysRevLett.109.157002
Weitere Auskünfte
Dr. Andreas Baumgartner, Departement Physik der Universität Basel, Tel. +41 61 267 39 06, E-Mail: andreas.baumgartner@unibas.ch

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch
http://prl.aps.org/abstract/PRL/v109/i15/e157002

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kernoberfläche beeinflusst Neutronenbindung
17.05.2019 | Technische Universität Darmstadt

nachricht Von 0 auf 1 in einer billionstel Sekunde
16.05.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Integrierte Zuckermoleküle schonen Zellkulturen

17.05.2019 | Biowissenschaften Chemie

Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock

17.05.2019 | Biowissenschaften Chemie

Additive Maschinen lernen Superlegierungen kennen

17.05.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics