Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematik für neue Supercomputer

09.10.2012
Wie sind bei der Entwicklung des Universums die ersten Galaxien entstanden? Das wollen Mathematiker der Universität Würzburg in Zusammenarbeit mit Astrophysikern in Heidelberg herausfinden. Die Deutsche Forschungsgemeinschaft fördert das Projekt mit einer halben Million Euro.

Die Milchstraße, in der sich die Erde befindet, ist eine Galaxis – eine Anhäufung sehr vieler Sonnensysteme. Im Universum gibt es noch viele andere Galaxien. Wie entstehen sie? Wie verhalten sich zwei Galaxien, wenn sie einander durchdringen?


Die Milchstraße ist eine Ansammlung von Sonnensystemen, die scheibenförmig angeordnet sind. Hier sieht man den Blick von oben auf eine solche Galaxis, wie sie in den besten Supercomputer-Simulationen bisher entstanden ist. In einem neuen Projekt soll dies mit neuer Mathematik sehr viel genauer simuliert werden.

Bild: Volker Springel

Solchen und anderen verwandten Fragen wird nun in einem neuen Forschungsprojekt nachgegangen. Geleitet wird es von den Professoren Christian Klingenberg vom Institut für Mathematik der Universität Würzburg und Volker Springel vom Heidelberg Institute for Theoretical Studies. Die Deutsche Forschungsgemeinschaft (DFG) fördert das Vorhaben der beiden Wissenschaftler mit rund 500.000 Euro.

Simulationen an Supercomputern der Zukunft

In der Astrophysik spielen Simulationsprogramme und Hochleistungscomputer eine große Rolle: Etwa ein Drittel der Rechenleistung der heutigen Supercomputer entfällt auf dieses Forschungsgebiet. So konnte Volker Springel zum Beispiel mit seiner Milleniumssimulation zeigen, wie sich im Lauf der Zeit im Universum Strukturen bilden.
In dem neuen Projekt geht es jetzt darum, in diesen Strukturen detailliertere Objekte wie Galaxien sichtbar zu machen. Das gilt als wichtiger Schritt hin zum Ziel, die Entwicklung des Universums an einem Supercomputer zu simulieren – von den Anfängen bis zur Entstehung der Milchstraße.

Grundlegende mathematische Fragen
Ohne Mathematik geht das nicht. Darum wendet sich der Forschungsverbund aus Würzburg und Heidelberg grundsätzlichen mathematischen Fragen zu, die hinter solchen Computersimulationen stehen. Er will die Methoden der Simulation so weit verbessern, dass sich die Entwicklung von Details im Universum sehr viel schneller, effizienter und genauer erforschen lässt.

„Mit unseren vorgeschlagenen mathematischen Methoden wagen wir uns auf absolutes Neuland vor“, sagt Christian Klingenberg. Genau das hatte die DFG in ihrer Ausschreibung im Schwerpunktprogramm „Software for Exascale Computing“ auch gefordert: Die Wissenschaft war aufgerufen, Anträge für Forschungsverbünde einzureichen, die den Supercomputern der Zukunft den Weg bahnen.

Kontakt

Prof. Dr. Christian Klingenberg, Institut für Mathematik, Universität Würzburg,
T (0931) 31-85045, klingen@mathematik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: DFG Galaxie Mathematik Milchstraße Supercomputer Universum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics