Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mainzer Physiker schlagen neue Methode zur Überwachung von Atommüll vor

06.12.2017

Wissenschaftler zeigen Szenarien zur Nutzung von Neutrinodetektoren in atomaren Zwischenlagern auf

Um radioaktives Material in Atommülllagern besser zu überwachen und sicherer aufzubewahren, könnten nach neuen wissenschaftlichen Erkenntnissen Neutrinodetektoren einen wichtigen Beitrag leisten. Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben die von abgebrannten Kernbrennstoffen ausgehende Neutrinostrahlung ermittelt. Anhand dieser Berechnungen können sie zeigen, dass der Einsatz von Neutrinodetektoren in bestimmten Szenarien hilfreich wäre.


Prototyp eines zur Überwachung von Atommülllagern geeigneten Antineutrino-Detektors

Foto/©: Virginia Tech, Center for Neutrino Physics


Dekontaminierung einer stillgelegten Nuklearanlage im US-Bundesstaat Washington: Derartige Maßnahmen könnten durch den Einsatz von Antineutrino-Detektoren unterstützt werden.

Foto/©: Photo courtesy U.S. Department of Energy

Neutrinos wechselwirken kaum mit Materie und können daher die Erde sowie jede von Menschen gemachte Abschirmung praktisch ungehindert durchdringen. „Von der Sonne kommen in jeder Sekunde etwa 100 Milliarden Neutrinos pro Quadratzentimeter auf der Erde an und zwar am Tag wie in der Nacht. Weil aber Neutrinos nur über die schwache Wechselwirkung mit Materie in Kontakt treten, sind sie die am schwersten zu detektierenden Elementarteilchen überhaupt“, erklärt Prof. Dr. Joachim Kopp vom Exzellenzcluster PRISMA der JGU.

Der Wissenschaftler ist Experte auf dem Gebiet der theoretischen Neutrinophysik und hat für seine Forschungen 2014 einen ERC Starting Grant erhalten, eine der höchstdotierten Fördermaßnahmen der EU.

Beim Betazerfall von radioaktiven Spaltprodukten entstehen Neutrinos in sehr großen Mengen. Für ihre Detektion über den inversen Betazerfall müssen diese Teilchen jedoch eine Mindestenergie von 1,8 Megaelektronenvolt aufweisen. Dann können sie in einem Szintillationsdetektor, einem mit speziellen Mineralölen gefüllten Tank, nachgewiesen werden. Die hochenergetischen Teilchen wechselwirken in dem Tank mit den vorhandenen Protonen, wobei ein charakteristisches Lichtsignal entsteht.

Derartige Neutrinodetektoren werden versuchsweise bereits zur Überwachung des laufenden Betriebs von Kernkraftwerken eingesetzt. Für die Überwachung von gelagertem Atommüll gibt es bisher noch keine Detektoren. „Laufende Reaktoren produzieren wesentlich mehr Neutrinos als stillgelegte Reaktoren oder gelagertes radioaktives Material“, erklärt Kopp mit dem Hinweis, dass es jedoch gerade aus Sicherheitsgründen wichtig wäre, den Verbleib von Atommüll im Auge zu behalten.

Neutrino-Überwachung von abgebranntem Kernbrennstoff

In ihrer Veröffentlichung im Fachmagazin Physical Review Applied berechnen Joachim Kopp und Vedran Brdar von der JGU sowie Patrick Huber von der US-Universität Virginia Tech zunächst den Neutrinofluss, den radioaktives Strontium-90 und andere in abgebranntem Kernbrennstoff vorkommende Spaltprodukte emittieren. Sie betrachten dann einige Szenarien, wie oder wo die Emissionen nachgewiesen werden könnten. Besonders hilfreich wäre ein entsprechender Detektor demnach für die Überwachung oberirdischer Lagerstätten, zum Beispiel auf dem Gelände von Kernkraftwerken.

Hier könnte ein Neutrinodetektor erkennen, falls radioaktives Material undokumentiert weggeschafft würde. Den Berechnungen zufolge würden die Messungen bei einem Detektor mit einem Volumen von 40 Tonnen etwa ein Jahr lang laufen müssen. „Das klingt zwar lange, aber es genügt, den Detektor hinzustellen und abzuwarten. Der große Vorteil ist, dass wir so den Inhalt der Container überprüfen können, ohne die Behälter überhaupt öffnen zu müssen“, erklärt Kopp das Verfahren.

Es würde in der Regel ausreichen, wenn der Detektor 10 bis 100 Meter entfernt aufgestellt wird, beispielsweise auf dem Anhänger eines Lastwagens. Die Methode ist nach Einschätzung von Kopp insbesondere im Hinblick auf die Nichtverbreitung atomwaffenfähigen Materials interessant, weshalb die Europäische Atomgemeinschaft EURATOM bereits Interesse bekundet hat.

In einem zweiten Szenario berechnen die Physiker die Situation bei der Überwachung von unterirdischen Endlagern am Beispiel der vorgeschlagenen Endlagerstätte Yucca Mountain in Nevada. Hier würde ein signifikanter Neutrinofluss selbst an der Oberfläche von einem kleinen 10-Tonnen-Tank entdeckt. „Allerdings können realistische Gefahren wie das Austreten nur geringer Mengen radioaktiven Materials leider nicht erkannt werden“, so Kopp.

Ein drittes Szenario, das sich die Wissenschaftler in ihren Berechnungen vornahmen, war das Aufspüren von unvollständig dokumentierten Lagerstätten, wie sie etwa auf dem Hanford-Gelände, einer noch aus Zeiten des Kalten Krieges stammenden und mittlerweile stillgelegten Nuklearanlage im US-Bundesstaat Washington, existieren. „Dazu reicht die aktuelle Detektortechnologie noch nicht ganz aus, unter anderem weil die kosmische Strahlung die Messungen beeinträchtigt“, erklärt Kopp. Allerdings gibt es bereits erste Prototypen für Detektoren, die dieses Problem vermeiden können.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_thep_neutrino_detektor_01.jpg
Prototyp eines zur Überwachung von Atommülllagern geeigneten Antineutrino-Detektors
Foto/©: Virginia Tech, Center for Neutrino Physics

http://www.uni-mainz.de/bilder_presse/08_physik_thep_neutrino_detektor_02.jpg
Dekontaminierung einer stillgelegten Nuklearanlage im US-Bundesstaat Washington: Derartige Maßnahmen könnten durch den Einsatz von Antineutrino-Detektoren unterstützt werden.
Foto/©: Photo courtesy U.S. Department of Energy

Veröffentlichung:
Vedran Brdar, Patrick Huber, Joachim Kopp
Antineutrino monitoring of spent nuclear fuel
Physical Review Applied, 29. November 2017
DOI: 10.1103/PhysRevApplied.8.054050
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.8.054050

Kontakt:
Prof. Dr. Joachim Kopp
Theoretische Hochenergiephysik (THEP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26117
E-Mail: jkopp@uni-mainz.de
http://www.staff.uni-mainz.de/jkopp/

Weitere Informationen:

http://www.prisma.uni-mainz.de/deu/846.php – Professor Dr. Joachim Kopp ;
http://www.prisma.uni-mainz.de – Exzellenzcluster PRISMA – Precision Physics, Fundamental Interactions and Structure of Matter

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

nachricht Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert
19.11.2018 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit Brennstoffzellen zur E-Mobilität

20.11.2018 | Energie und Elektrotechnik

Die Schurken der Schuppenflechte

20.11.2018 | Medizin Gesundheit

Klärschlamm: Neuartiges Verfahren ermöglicht bessere Wertstoffrückgewinnung

20.11.2018 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics