Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Letzte Stahlnaht an Wendelstein 7-X geschlossen

04.06.2013
Kern der Fusionsanlage fertig gestellt / schwieriges Montage-Kapitel erfolgreich beendet

Die letzte offene Naht an der stählernen Außenhaut der Fusionsanlage Wendelstein 7-X wurde vergangene Woche geschlossen. Der Kern der Forschungsapparatur, die 2014 im Teilinstitut Greifswald des Max-Planck-Instituts für Plasmaphysik (IPP) in Betrieb gehen wird, ist damit im Rohbau fertig.


Präzisionsarbeit: In der Plasmakammer wird einer von über 250 Stutzen angeschweißt
(Foto: IPP, Anja Ullmann)

Ziel der Fusionsforschung ist es – ähnlich wie die Sonne – aus der Verschmelzung von Atomkernen Energie zu gewinnen. Um das Fusionsfeuer zu zünden, muss in einem späteren Kraftwerk der Brennstoff, ein Wasserstoffplasma, in Magnetfeldern eingeschlossen und auf Temperaturen über 100 Millionen Grad aufgeheizt werden. Wendelstein 7-X, die nach der Fertigstellung weltweit größte Fusionsanlage vom Typ Stellarator, hat die Aufgabe, die Kraftwerkseignung dieses Bautyps zu untersuchen. 70 große supraleitende Magnetspulen sollen dazu im Dauerbetrieb einen besonders stabilen und wärmeisolierenden magnetischen Käfig für das Plasma erzeugen.

Montiert wird die kreisförmige Anlage in fünf nahezu baugleichen Modulen: Jeweils ein Fünftel des Plasmagefäßes, auf das 14 Magnetspulen aufgefädelt sind, ist von einer stählernen Außenhülle umschlossen – insgesamt ein Gewicht von 120 Tonnen. Wie Tortenstücke auf dem Maschinenfundament zusammengestellt, formen die fünf Module einen stählernen Ring, aus dem zahlreiche Anschluss-Stutzen ragen. Sie verbinden die Öffnungen der Plasmakammer durch den Spulenbereich hindurch mit dem Außengefäß. Später werden hier Messgeräte, Pumpen und Heizapparaturen angeschlossen.

Der 254te und damit letzte Stutzen wurde am 28. Mai 2013 millimetergenau zwischen Plasma- und Außengefäß eingeschweißt. Gut zwei Jahre hat die aufwändige Stutzenmontage gedauert. Vorausgegangen war eine ebenso lange Testphase – „eine riesige Lernübung“, so Montageleiter Dr. Lutz Wegener, während der die Methoden zum exakten Positionieren und Verbinden der vielgestaltigen Stutzen mit dem bizarr geformten Plasmagefäß entwickelt wurden. Eine der vielen Herausforderungen: Weil Edelstahl beim Schweißen an der Nahtstelle unweigerlich schrumpft, verformen sich die Teile und ändern ihre Position. Auch beim Verschweißen der fünf Anlagenmodule miteinander war dies zu berücksichtigen: Rechnungen und Tests während der Montageplanung hatten hier pro Naht bis zu acht Millimeter Verzug erwarten lassen – untragbar, weil so die Stutzen und mit ihnen später die angeschlossenen Messgeräte an die falsche Stelle im Plasma schauen würden.

Die Lösung: Das anzuschweißende Modul wurde – per Laser-Tracker genau vermessen – auf Gleitlagern etwa acht Millimeter von seinem fest fixierten Gegenüber weggeschoben. Damit sich nichts gegeneinander verzieht, begannen anschließend mehrere Schweißer zugleich, die beiden Nahtlücken sowohl der Plasmakammer als auch der Außenhülle zu schließen. Für die zusammen rund 40 Meter langen, mehrlagigen Nähte brauchten die Spezialisten der Firma MAN-Diesel-Turbo mehrere Wochen, während derer sich das tonnenschwere Modul – dem Schrumpf folgend – in Zehntelmillimeter-Schritten langsam wieder in seine Ausgangslage zurückzog. „Es ist eine wirkliche Kunst, so ein großes und schweres Bauteil beim Schweißen in die richtige Richtung zu lenken“, sagt Karsten Liesenberg, der für die Konzeption der Gefäßmontage verantwortlich ist: „Zeigten die Laser-Tracker, dass das Modul nicht exakt parallel herangezogen wird, haben die Schweißer schon mal auf die gegenüber liegende Seite der Naht gewechselt, damit das Teil sich wieder in die korrekte Richtung dreht“. Diese Präzisionsarbeit wiederholte sich an den übrigen vier Modulgrenzen. Inzwischen ist der Ring geschlossen und alle fünf Module stehen auf die verlangten rund zwei Millimeter genau in Position.

Bis 2014 die Montage von Wendelstein 7-X abgeschlossen ist, müssen noch einige Arbeiten folgen, darunter die Verbindung der Magnete mit Strom- und Heliumversorgung sowie der Innenausbau im Plasmagefäß. Parallel werden die Systeme zum Aufheizen des Plasmas aufgebaut, die Versorgungseinrichtungen für elektrische Energie und Kühlung, die Maschinensteuerung und schließlich die zahlreichen Messgeräte, die das Verhalten des Plasmas diagnostizieren sollen.

Isabella Milch | Max-Planck-Institut
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics