Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristalle, die flüssiger als Flüssigkeiten sind

20.03.2017

Physiker aus Augsburg und Dresden finden experimentelle Hinweise, dass sich Superfluidität und Supersolidität in magnetischen Systemen realisieren lassen.

Ein Material, das flüssig und zugleich fest ist, geht an die Grenzen dessen, was man sich gemeinhin vorzustellen vermag. Gleichwohl wird von der Physik seit über 50 Jahren theoretisch vorhergesagt, dass es solche als supersolid bezeichnete Materialien bzw. Materialzustände gibt. So waren theoretische Modelle zur Supersolidität Gegenstand intensiver Forschungen der klügsten Köpfe in der Physik, darunter die Nobelpreisträger Thouless, Anderson und Legget.


Darstellung der Spinell-Verbindung MnCr2S4 (Mn: rot, Cr: blau, S: gelb) als Supersolid: Geordnete Chromspins (rot) sind von Manganspins (gelb) umgeben, die die Symmetrie einer Supersolid-Phase haben.

© V. Tsurkan

Möglichkeiten, solch einen exotischen Materialzustand experimentell zu beobachten bzw. in einem Material zu realisieren, wurden bis heute allerdings nicht gefunden. Zeitgleich mit zwei internationalen Forschergruppen, die durch die Anwendung sogenannter „Atomfallen“ jetzt erfolgreich waren, berichten Physiker aus Augsburg und Dresden aktuell in Science Advances über einen von ihnen entdeckten Weg der Realisation von Supersolidität in Spinsystemen bei sehr hohen Magnetfeldern.

Fest, flüssig und gasförmig – das sind die drei klassischen Zustände von Materie, die uns vertraut sind. Dass ein Material zwei dieser Eigenschaften gleichzeitig besitzen könnte, widerspricht unserer Erfahrung und ist nur schwer vorstellbar. Noch unvorstellbarer scheint die Annahme, dass ein Material fest, also kristallin, und zugleich nicht nur flüssig, sondern superflüssig – also ohne jegliche Viskosität – sein könnte.

Die Physik kennt allerdings superfluides, also superflüssiges Helium, das völlig reibungsfrei durch engste Kapillaren dringen kann. Sie kennt auch supraleitende Elektronen, die Paare bilden und sich ohne jeden elektrischen Widerstand durch Metalle fortbewegen können. Aber weder Reibungsfreiheit noch das Fehlen jeglichen elektrischen Widerstands sind „normal“.

Beide sind prominente Beispiele für das 1924 vorhergesagte Bose-Einstein-Kondensat (BEK), mit dem ein extremer Aggregatzustand ununterscheidbarer Teilchen gemeint ist, ein makroskopischer Quantenzustand, der sich mit der klassischen Physik nicht bis ins Letzte erklären lässt.

Supersolidität – ein kristalliner Festkörper, der durch Quantenphänomene auch superfluide Eigenschaften aufweist, sich also wie eine Flüssigkeit ohne Viskosität verhalten kann – ist u. U. ein weiteres Beispiel für ein Bose-Einstein-Kondensat.

Deshalb ist Supersolidität ein weltweit aktuelles Thema der Forschung. Die von Antony Legget (Nobelpreis 2003) bereits im Jahre 1970 gestellte Frage „Can a Solid be Superfluid?“ konnte allerdings bis heute experimentell nicht zufriedenstellend beantwortet werden.

Über lange Zeit hinweg war es die größte Hoffnung der physikalischen Community, Supersolidität in ultrakaltem festem Helium zu realisieren. Diese Hoffnung hat sich nicht erfüllt. Als realistische alternative Methode zur Realisierung von Supersolidität wurden einzig lasergekühlte Atomfallen angesehen – eine Methode, bei der die Realisierung von Bose-Einstein-Kondensaten mit einer Anzahl von einigen hundert Atomen angestrebt wird. Und in der Tat konnten jüngst zwei internationale Arbeitsgruppen über die erstmalige Realisierung von Supersolidität auf eben diesem Weg berichten (J. Léonard et al., Nature 543, 87, 2017; J.-R. Li et al., Nature 543, 91, 2017).

Einen ganz neuen, auf magnetischen Spinsystemen beruhenden Weg zur Verwirklichung von Bose-Einstein Kondensationen bzw. von Phänomenen wie Superfluidität und Supersolidität sind Forscher des Zentrums für Elektronische Korrelationen und Magnetismus der Universität Augsburg in Kooperation mit Kollegen des Hochfeldmagnetlabors am Helmholtz-Zentrum Dresde-Rossendorf jetzt gegangen – und dies mit Erfolg: In Science Advances beschreiben sie, wie mit der Bose-Einstein-Kondensation von Magnonen – das sind angeregte Spinzustände in einem magnetischen Kristallgitter – kohärente Quantenzustände erzeugt werden können.

Atomare Spins im magnetischen Kristallgitter besitzen kollektive Anregungszustände sogenannte Magnonen. Die Bose-Einstein-Kondensation solcher Magnonen scheint sich nun als ein weiterer möglicher Weg zur Realisation kohärenter Quantenzustände zu erweisen: In einem von mit extrem hohen Magnetfeldern angeregten Spinsystem glauben die Physiker aus Augsburg und Dresden Superfluidät und insbesondere Supersolidität dingfest gemacht zu haben.

Sie wählten für ihre Untersuchungen die Mangan-Chrom-Schwefel-Verbindung MnCr2S4, einen Mangan-Chrom-Spinell, der bei tiefen Temperaturen eine ungewöhnliche Spinordnung zeigt: Im magnetischen Austauschfeld der Chrom-Spins richten sich die Mangan-Spins annähernd antiparallel aus, die Mangan-Spins wiederum zeigen aufgrund frustrierter Wechselwirkungen einen komplexen magnetischen Grundzustand, der als superfluide Phase charakterisiert werden kann. In hohen Magnetfeldern kann dieser Zustand sogar in eine supersolide Phase transformiert werden.

„In Kooperation mit der Gruppe des Kollegen Wosnitza in Dresden haben wir im dortigen Hochfeld-Magnetlabor MnCr2S4-Einkristalle mittels Magnetisierung und Ultraschall bei tiefen Temperaturen und Magnetfeldern von bis zu 60 Tesla untersucht“, berichtet Prof. Dr. Alois Loidl, Inhaber des Lehrstuhls für Experimentalphysik V am Augsburger Zentrum für Elektronische Korrelationen und Magnetismus. „Bei sehr hohen Magnetfeldern“, so Loidl weiter, „fanden wir in der Probe einen ungewöhnlich robusten magnetischen Zustand, bei dem die Mangan-Spins ideale antiparallele, also antiferromagnetische Ordnung zeigen. In diesem Zustand wird das magnetische Chrom-Austauschfeld durch das extrem hohe von außen angelegte Magnetfeld ideal kompensiert. Die Magnetisierung bleibt in einem Bereich von 25 Tesla absolut konstant.“

Loidls Mitarbeiter Dr. Vladimir Tsurkan ergänzt: „Ein derartiges Magnetisierungsplateau ist äußerst ungewöhnlich, und theoretisch wird vorhergesagt, dass in den daran angrenzenden Phasen Supersolidität vorliegt. Diese Phasen haben wir in der vorliegenden Arbeit nun identifiziert und charakterisiert. Mit dem Ergebnis unserer Untersuchungen an der Mangan-Chrom-Verbindung haben wir jetzt also ein Indiz dafür, dass magnetische Systeme unter extremen Temperatur-, Druck- oder Magnetfeld-Bedingungen als Quanten-Gittermodelle beschrieben werden können. Sie präsentieren sich damit als äußerst interessante Kandidaten zur Realisierung kohärenter Quantenphänomene.“


Originalpublikation:

V. Tsurkan, S. Zherlitsyn, L. Prodan, V. Felea, P.T. Cong, Y. Skourski, Zhe Wang, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl: Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4 - Science Advances 3:e1601982 (2017)

Ansprechpartner:

Prof. Dr. Alois Loidl
Lehrstuhl für Experimentalphysik V/EKM
Universität Augsburg
D-86135 Augsburg
Telefon 0821/598-3600
alois.loidl@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/3/3/e1601982

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Moleküle im Laserfeld wippen
17.01.2019 | Forschungsverbund Berlin e.V.

nachricht Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern
16.01.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leistungsschub für alle Omicron Laser

17.01.2019 | Messenachrichten

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungsnachrichten

Mit Blutgefäßen aus Stammzellen gegen Volkskrankheit Diabetes

17.01.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics