Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristalle, die flüssiger als Flüssigkeiten sind

20.03.2017

Physiker aus Augsburg und Dresden finden experimentelle Hinweise, dass sich Superfluidität und Supersolidität in magnetischen Systemen realisieren lassen.

Ein Material, das flüssig und zugleich fest ist, geht an die Grenzen dessen, was man sich gemeinhin vorzustellen vermag. Gleichwohl wird von der Physik seit über 50 Jahren theoretisch vorhergesagt, dass es solche als supersolid bezeichnete Materialien bzw. Materialzustände gibt. So waren theoretische Modelle zur Supersolidität Gegenstand intensiver Forschungen der klügsten Köpfe in der Physik, darunter die Nobelpreisträger Thouless, Anderson und Legget.


Darstellung der Spinell-Verbindung MnCr2S4 (Mn: rot, Cr: blau, S: gelb) als Supersolid: Geordnete Chromspins (rot) sind von Manganspins (gelb) umgeben, die die Symmetrie einer Supersolid-Phase haben.

© V. Tsurkan

Möglichkeiten, solch einen exotischen Materialzustand experimentell zu beobachten bzw. in einem Material zu realisieren, wurden bis heute allerdings nicht gefunden. Zeitgleich mit zwei internationalen Forschergruppen, die durch die Anwendung sogenannter „Atomfallen“ jetzt erfolgreich waren, berichten Physiker aus Augsburg und Dresden aktuell in Science Advances über einen von ihnen entdeckten Weg der Realisation von Supersolidität in Spinsystemen bei sehr hohen Magnetfeldern.

Fest, flüssig und gasförmig – das sind die drei klassischen Zustände von Materie, die uns vertraut sind. Dass ein Material zwei dieser Eigenschaften gleichzeitig besitzen könnte, widerspricht unserer Erfahrung und ist nur schwer vorstellbar. Noch unvorstellbarer scheint die Annahme, dass ein Material fest, also kristallin, und zugleich nicht nur flüssig, sondern superflüssig – also ohne jegliche Viskosität – sein könnte.

Die Physik kennt allerdings superfluides, also superflüssiges Helium, das völlig reibungsfrei durch engste Kapillaren dringen kann. Sie kennt auch supraleitende Elektronen, die Paare bilden und sich ohne jeden elektrischen Widerstand durch Metalle fortbewegen können. Aber weder Reibungsfreiheit noch das Fehlen jeglichen elektrischen Widerstands sind „normal“.

Beide sind prominente Beispiele für das 1924 vorhergesagte Bose-Einstein-Kondensat (BEK), mit dem ein extremer Aggregatzustand ununterscheidbarer Teilchen gemeint ist, ein makroskopischer Quantenzustand, der sich mit der klassischen Physik nicht bis ins Letzte erklären lässt.

Supersolidität – ein kristalliner Festkörper, der durch Quantenphänomene auch superfluide Eigenschaften aufweist, sich also wie eine Flüssigkeit ohne Viskosität verhalten kann – ist u. U. ein weiteres Beispiel für ein Bose-Einstein-Kondensat.

Deshalb ist Supersolidität ein weltweit aktuelles Thema der Forschung. Die von Antony Legget (Nobelpreis 2003) bereits im Jahre 1970 gestellte Frage „Can a Solid be Superfluid?“ konnte allerdings bis heute experimentell nicht zufriedenstellend beantwortet werden.

Über lange Zeit hinweg war es die größte Hoffnung der physikalischen Community, Supersolidität in ultrakaltem festem Helium zu realisieren. Diese Hoffnung hat sich nicht erfüllt. Als realistische alternative Methode zur Realisierung von Supersolidität wurden einzig lasergekühlte Atomfallen angesehen – eine Methode, bei der die Realisierung von Bose-Einstein-Kondensaten mit einer Anzahl von einigen hundert Atomen angestrebt wird. Und in der Tat konnten jüngst zwei internationale Arbeitsgruppen über die erstmalige Realisierung von Supersolidität auf eben diesem Weg berichten (J. Léonard et al., Nature 543, 87, 2017; J.-R. Li et al., Nature 543, 91, 2017).

Einen ganz neuen, auf magnetischen Spinsystemen beruhenden Weg zur Verwirklichung von Bose-Einstein Kondensationen bzw. von Phänomenen wie Superfluidität und Supersolidität sind Forscher des Zentrums für Elektronische Korrelationen und Magnetismus der Universität Augsburg in Kooperation mit Kollegen des Hochfeldmagnetlabors am Helmholtz-Zentrum Dresde-Rossendorf jetzt gegangen – und dies mit Erfolg: In Science Advances beschreiben sie, wie mit der Bose-Einstein-Kondensation von Magnonen – das sind angeregte Spinzustände in einem magnetischen Kristallgitter – kohärente Quantenzustände erzeugt werden können.

Atomare Spins im magnetischen Kristallgitter besitzen kollektive Anregungszustände sogenannte Magnonen. Die Bose-Einstein-Kondensation solcher Magnonen scheint sich nun als ein weiterer möglicher Weg zur Realisation kohärenter Quantenzustände zu erweisen: In einem von mit extrem hohen Magnetfeldern angeregten Spinsystem glauben die Physiker aus Augsburg und Dresden Superfluidät und insbesondere Supersolidität dingfest gemacht zu haben.

Sie wählten für ihre Untersuchungen die Mangan-Chrom-Schwefel-Verbindung MnCr2S4, einen Mangan-Chrom-Spinell, der bei tiefen Temperaturen eine ungewöhnliche Spinordnung zeigt: Im magnetischen Austauschfeld der Chrom-Spins richten sich die Mangan-Spins annähernd antiparallel aus, die Mangan-Spins wiederum zeigen aufgrund frustrierter Wechselwirkungen einen komplexen magnetischen Grundzustand, der als superfluide Phase charakterisiert werden kann. In hohen Magnetfeldern kann dieser Zustand sogar in eine supersolide Phase transformiert werden.

„In Kooperation mit der Gruppe des Kollegen Wosnitza in Dresden haben wir im dortigen Hochfeld-Magnetlabor MnCr2S4-Einkristalle mittels Magnetisierung und Ultraschall bei tiefen Temperaturen und Magnetfeldern von bis zu 60 Tesla untersucht“, berichtet Prof. Dr. Alois Loidl, Inhaber des Lehrstuhls für Experimentalphysik V am Augsburger Zentrum für Elektronische Korrelationen und Magnetismus. „Bei sehr hohen Magnetfeldern“, so Loidl weiter, „fanden wir in der Probe einen ungewöhnlich robusten magnetischen Zustand, bei dem die Mangan-Spins ideale antiparallele, also antiferromagnetische Ordnung zeigen. In diesem Zustand wird das magnetische Chrom-Austauschfeld durch das extrem hohe von außen angelegte Magnetfeld ideal kompensiert. Die Magnetisierung bleibt in einem Bereich von 25 Tesla absolut konstant.“

Loidls Mitarbeiter Dr. Vladimir Tsurkan ergänzt: „Ein derartiges Magnetisierungsplateau ist äußerst ungewöhnlich, und theoretisch wird vorhergesagt, dass in den daran angrenzenden Phasen Supersolidität vorliegt. Diese Phasen haben wir in der vorliegenden Arbeit nun identifiziert und charakterisiert. Mit dem Ergebnis unserer Untersuchungen an der Mangan-Chrom-Verbindung haben wir jetzt also ein Indiz dafür, dass magnetische Systeme unter extremen Temperatur-, Druck- oder Magnetfeld-Bedingungen als Quanten-Gittermodelle beschrieben werden können. Sie präsentieren sich damit als äußerst interessante Kandidaten zur Realisierung kohärenter Quantenphänomene.“


Originalpublikation:

V. Tsurkan, S. Zherlitsyn, L. Prodan, V. Felea, P.T. Cong, Y. Skourski, Zhe Wang, J. Deisenhofer, H.-A. Krug von Nidda, J. Wosnitza, and A. Loidl: Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4 - Science Advances 3:e1601982 (2017)

Ansprechpartner:

Prof. Dr. Alois Loidl
Lehrstuhl für Experimentalphysik V/EKM
Universität Augsburg
D-86135 Augsburg
Telefon 0821/598-3600
alois.loidl@physik.uni-augsburg.de

Weitere Informationen:

http://advances.sciencemag.org/content/3/3/e1601982

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics