Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kopplung von Licht und Materie kontrolliert

05.03.2018

Forscher aus Würzburg und London haben den Grundstein für ein neues Gebiet der Nano-Optik gelegt: Ihnen ist es gelungen, die Kopplung zwischen Licht und Materie bei Raumtemperatur unter Kontrolle zu bringen.

Wenn Wissenschaftler im Journal Science Advances publizieren, darf man davon ausgehen, dass sie eine besonders aufregende Neuerung präsentieren. Physiker der Julius-Maximilians-Universität Würzburg (JMU) sind aktuell in diesem Journal vertreten: Ihnen ist es mit britischen Kollegen gelungen, Licht und Materie bei Raumtemperatur zu koppeln und diesen Zustand zu kontrollieren.


Künstlerische Darstellung eines plasmonischen Nano-Resonators in Form eines Schlitzes an einer Goldschicht. Durch die Annäherung eines Quantenpunktes (rot) verstärkt sich deren Wechselwirkung.

Bild: Heiko Groß

Treiben die Forscher ihre Arbeit auf diesem Gebiet weiter erfolgreich voran, könnte das einmal für die Realisierung von optischen Quantencomputern bedeutsam sein. Solche Computer, die gewissermaßen „mit Licht rechnen“, sollten um ein Vielfaches leistungsfähiger als bisherige Rechner sein.

Emittierte Lichtteilchen gefangen und re-absorbiert

Ein Lichtteilchen (Photon) entsteht, wenn zum Beispiel ein Molekül oder ein Quantenpunkt elektronisch angeregt wurde und dann in seinen niederenergetischen Grundzustand zurückkehrt. Dieser Prozess ist als spontane Emission bekannt – und er ist normalerweise nicht umkehrbar. Ein emittiertes Lichtteilchen wird nicht einfach zum Emitter zurückkehren und dort wieder absorbiert werden.

Koppelt man aber den Emitter an ein Speicherelement für Licht, einen sogenannten optischen Resonator, dann kann das emittierte Photon eine gewisse Zeit in der Nähe des Emitters bleiben und von diesem wieder absorbiert werden. „Eine solche Umkehrung der spontanen Emission ist hochinteressant für die Informationsverarbeitung, da hier Quanteninformation zwischen Materie und Licht unter Erhaltung der Quanteneigenschaften ausgetauscht wird“, sagt Professor Bert Hecht vom Physikalischen Institut der JMU.

Plasmonischen Nano-Resonator verwendet

Der Austausch von Quanteninformation ist jedoch meistens nur bei sehr tiefen Temperaturen realisierbar, weil dann die Spektrallinien der Emitter sehr scharf sind und deshalb die Absorptionswahrscheinlichkeit hoch ist. Den Teams der Professoren Bert Hecht und Ortwin Hess (Imperial College, London) ist es nun als einer der ersten Gruppen weltweit gelungen, den Zustand der starken Kopplung von Licht und Materie bei Raumtemperatur zu erreichen.

Um die Wiederabsorption eines Photons auch bei Raumtemperatur zu erwirken, haben die Forscher einen plasmonischen Nano-Resonator verwendet, der die Form eines extrem schmalen Schlitzes in einer dünnen Goldschicht hat. „Dieser Resonator erlaubt es, die elektromagnetische Energie eines gespeicherten Photons räumlich stark zu konzentrieren, nämlich auf einen Bereich, der nicht viel größer ist als ein Quantenpunkt“, erklärt Hechts Mitarbeiter Heiko Groß. Dadurch werde das gespeicherte Photon mit hoher Wahrscheinlichkeit vom Emitter re-absorbiert.

Kopplung zwischen Emitter und Resonator kontrolliert

Diese Idee wurde auch schon von anderen Arbeitsgruppen umgesetzt. Die Forscher aus Würzburg und London haben es nun aber unter anderem geschafft, die Kopplung zwischen Resonator und Emitter zu kontrollieren, sie kontinuierlich zu verändern, sie gezielt ein- und auszuschalten. Das gelang dem Team, indem es den Resonator an der Spitze eines Rasterkraftmikroskops befestigte und ihn so mit hoher Präzision in die unmittelbare Nähe des Emitters – in diesem Fall eines Quantenpunktes – bringen konnte.

Schneller Austausch zwischen Emitter und Resonator

Die Forscher hoffen jetzt darauf, die Kopplung von Quantenpunkt und Resonator noch gezielter beeinflussen zu können – eventuell sogar direkt durch eingestrahlte Photonen. Daraus ergäben sich neue Möglichkeiten für die Realisierung von optischen Quantencomputern.

„Nützlich ist in diesem Zusammenhang auch die Tatsache, dass die energetische Anregung zwischen Quantenpunkt und Resonator extrem schnell ausgetauscht wird“, sagt Groß. Das löse eines der Probleme, die es bisher im Tieftemperaturbereich gab: Dort wird die Oszillation der Energie zwischen Licht und Materie durch die langen Speicherzeiten des Resonators verlangsamt.

Heiko Groß, Joachim M. Hamm, Tommaso Tufarelli, Ortwin Hess, Bert Hecht: Near-field strong coupling of single quantum dots. Science Advances 2018; 4: eaar4906. März 2018, DOI: doi.org/10.1126/sciadv.aar4906

Kontakt

Heiko Groß und Prof. Dr. Bert Hecht, Physikalisches Institut der Universität Würzburg, T +49 931 31-85863, hecht@physik.uni-wuerzburg.de

Corinna Russow/Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics