Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom klassischen Laser zum „Quantenlaser“

29.03.2010
Innsbrucker Physiker erforschen Verhalten von Lasern aus einzelnen Atomen

Einer Forschergruppe um Rainer Blatt und Piet Schmidt an der Universität Innsbruck ist es gelungen, einen Laser mit einem einzelnen Atom zu realisieren, der sowohl die Eigenschaften eines klassischen Lasers zeigt, als auch die quantenmechanische Natur der Atom-Photon-Wechselwirkung. Ihre Ergebnisse präsentieren die Forscher nun in der Fachzeitschrift Nature Physics.

Vor 50 Jahren wurde der erste Laser entwickelt. Heute sind die künstlich gerichteten Lichtstrahlen aus unserem Alltag nicht mehr weg zu denken. Laser sind zentraler Bestandteil einer Vielzahl von Geräten mit Anwendungen in Telekommunikation, Medizin, Haushalt und Forschung. Ein Laser besteht üblicherweise aus einem Verstärkungsmedium, das elektrisch oder optisch gepumpt wird und von einem Spiegelresonator umgeben ist. Das Licht im Resonator wird in Form sogenannter Schwingungsmoden hin- und herreflektiert und dabei in seiner Intensität überhöht und durch das Medium verstärkt.

Eines der markantesten Merkmale eines klassischen Lasers ist der sprunghafte Anstieg der Ausgangsleistung beim Erreichen der sogenannten Schwellpumpleistung, bei der die Verluste bei einem Umlauf des Lichts im Resonator durch die Verstärkung im Medium gerade ausgeglichen werden. Ursache dieses Verhaltens ist ein Selbstverstärkungseffekt der Wechselwirkung des Lichts mit den Atomen: Je mehr Photonen in einer Schwingungsmode bereits vorhanden sind, desto größer ist die Verstärkung des Lichts in dieser Mode. Üblicherweise tritt dieser Effekt bei makroskopischen Lasern mit vielen Atomen und vielen Photonen auf.

Den Innsbrucker Forschern ist es nun gelungen, den Beginn dieses verstärkenden Schwellverhaltens bei dem kleinstmöglichen Grundbaustein eines Lasers nachzuweisen: einem einzelnen Atom, das mit einer einzelnen Mode in einem optischen Resonator wechselwirkt. Dazu wurde ein Calcium-Ion in einer Ionenfalle eingefangen und mit Hilfe von externen Lasern angeregt. Zwei, das Ion umgebende Spiegel formen einen optischen Resonator mit hoher Güte, der die vom Ion emittierten Photonen in einer Mode einfängt und speichert. Das Ion wird durch die externen Laser zyklisch angeregt und fügt der Resonatormode bei jedem Zyklus ein Photon hinzu, was zu einer Verstärkung des Lichts führt.

Bei starker Kopplung des Ions an die Resonatormode verhält sich das System aus Atom und Resonator quantenmechanisch: Es können immer nur einzelne Photonen in den Resonator eingebracht werden. „Damit kann es zu keiner Selbstverstärkung und auch zu keinem Schwellverhalten kommen“, erklärt François Dubin, französischer Postdoc und Erstautor der Veröffentlichung. Dieser „Quantenlaser“ wurde bereits vor einigen Jahren in einem ähnlichen System demonstriert. Clou des Innsbrucker Experiments ist die einstellbare Kopplung des Atoms an der Resonatormode. Durch geeignete Wahl der Parameter des Anregungslasers konnten die Physiker der Universität Innsbruck eine stärkere Anregung erreichen und dadurch mehr Photonen in den Resonator einbringen. Obwohl im Mittel immer noch weniger als ein Photon im Resonator vorhanden war, konnten Selbstverstärkungseffekte in Form eines Schwellverhaltens beobachtet werden. „Ein einzelnes Atom ist ein sehr schwacher Verstärker. Daher ist das Schwellverhalten nicht so stark ausgeprägt wie bei einem klassischen Laser“, erläutert Piet Schmidt die Ergebnisse.

Eine noch stärkere Anregung führt im Gegensatz zum klassischen Laser nicht zu einer höheren Ausgangsleistung, sondern aufgrund quantenmechanischer Interferenzen zum Verlöschen des Lasers. Dies stellt eine fundamentale Einschränkung für Miniaturlaser bestehend aus wenigen Atomen dar. Die Innsbrucker Forscher wollen daher nun den Übergang vom Quantenlaser zum klassischen Laser durch kontrolliertes Hinzufügen von weiteren Atomen genauer untersuchen.

Unterstützt wurden die Arbeiten vom österreichischen Wissenschaftsfonds FWF, der Europäischen Kommission und der Industriellenvereinigung Tirol.

Bilder: http://www.uibk.ac.at/public-relations/presse/archiv/2010/032801/

Publikation: F. Dubin, C. Russo, H.G. Barros, A. Stute, C. Becher, P.O. Schmidt and R. Blatt, „Quantum to classical transition in a single ion laser“, Nature Physics, published online: 28 March 2010 | doi: 10.1038/NPHYS1627. (http://dx.doi.org/10.1038/NPHYS1627)

Kontakt:
Univ.-Prof. Dr. Piet.Schmidt
QUEST Institut for Experimental Quantum Metrology
Physikalisch-Technische Bundesanstalt
Bundesallee 100, D-38116 Braunschweig
Tel.: ++49 531 592-4700
Email: Piet.Schmidt@ptb.de
Web: http://www.quantummetrology.de/
Univ.-Prof. Dr. Rainer Blatt
Institut für Experimentalphysik
Universität Innsbruck
Technikerstraße 25, A-6020 Innsbruck
Tel.: ++43 512 507-6350
Email: Rainer.Blatt@uibk.ac.at
Web: http://www.quantumoptics.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Innrain 52, A-6020 Innsbruck
Tel.: ++43 512 507-32022
Mobil: +43 650 5777122
Email: Christian.Flatz@uibk.ac.at
Web: http://www.uibk.ac.at/

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at/
http://www.quantumoptics.at
http://www.quantummetrology.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics