Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kernmaterie am kritischen Punkt

28.07.2010
Mittels hochpräziser Messverfahren untersuchen Forscher des Max-Planck-Instituts für Kernphysik die Eigenschaften von Kernmaterie. Neueste Ergebnisse aus einem Experiment an ISOLDE/CERN für die Masse zweier Krypton-Isotope ergeben eine bessere Abgrenzung für Quanten-Phasenübergänge in Atomkernen.
[Physical Review Letters, 105, 032502 (2010)]

Fest – flüssig – gasförmig. Dies sind die uns aus dem Alltag vertrauten Aggregatzustände, in der Wissenschaft Phasen genannt. Sie sind von einander abgegrenzt und der Übergang von einer Phase zur anderen – Schmelzen, Verdampfen oder Sublimieren wie auch ihre Umkehrungen – ist durch Temperatur und Druck bestimmt.

So lehrt es die klassische Thermodynamik, die sehr allgemeine statistische Theorie für Systeme aus vielen wechselwirkenden Teilchen: im Alltagsbeispiel Atome oder Moleküle. Wie verhalten sich aber die Bestandteile von Atomen, die Elektronen und Kerne? Gibt es auch hier Aggregatzustände und Phasenübergänge und wovon hängen diese ab? Mit diesen Fragen haben sich Forscher der Gruppe von Klaus Blaum vom Heidelberger Max-Planck-Institut für Kernphysik an ISOLDE/CERN in Zusammenarbeit mit Wissenschaftlern von sechs weiteren Forschungsinstitutionen am Beispiel der Kernmaterie näher beschäftigt.

Kernmaterie ist allein schon was ihre Dichte angeht exotisch. Diese ist so ungeheuer groß, dass ein Stück von der Größe eines Würfelzuckers eine Masse von 200 Milliarden kg hätte, was dem Wasserinhalt des Ederstausees entspricht. Dicht gepackt liegen hier die Kernbestandteile (Nukleonen), positiv geladene Protonen und elektrisch neutrale Neutronen, und es liegt nahe, den Kern wie ein Flüssigkeitströpfchen zu behandeln – so tat es bereits im Jahr 1935 Carl-Friedrich von Weizsäcker mit seiner Massenformel, welche die wichtigsten Eigenschaften der Kerne gut beschreibt (Abb. 1). Das Stichwort Masse liefert auch den experimentellen Zugang, den sich die Forscher um Klaus Blaum zunutze machen: Nach Einsteins berühmter Formel E = mc2 sind Energie und Masse äquivalent. Dies zeigt sich daran, dass ein Atomkern etwas leichter ist als all seine Nukleonen einzeln zusammen genommen. Dieser „Massendefekt“ entspricht gerade der Bindungsenergie des Kerns.

Hinzu kommen noch Effekte der Quantenphysik, denn ein Atomkern ist ein mikroskopisch kleines Objekt: 100.000mal kleiner als das Atom selbst, enthält aber 99,98% von dessen Masse. Die theoretische Beschreibung bedient sich hier der Quantenstatistik, also der Thermodynamik für Quantensysteme – seien es Quantengase (z. B. Bose-Einstein-Kondensate) oder Quantenflüssigkeiten (Suprafluidität) mit ganz neuen, der Alltagserfahrung fremden Eigenschaften. „Für einen bestimmten Bereich der Neutronenanzahl um das Element Yttrium zeigten frühere Messungen deutliche Hinweise auf einen Phasenübergang in der Kernmaterie und wir waren nun interessiert, wo die Grenzen für diesen Übergang liegen“, so Klaus Blaum. „Eine solche Grenze nennt man auch kritischen Punkt – für Wasser z. B. verschwindet oberhalb von 374°C der Unterschied zwischen flüssig und gasförmig.“ Die Phasenänderung ist mit einer Deformation des normalerweise kugelförmigen Kerns verbunden, was sich in einer schwächeren Bindung der Nukleonen (Abb. 2) und einer Vergrößerung des mittleren Kerndurchmessers äußert.

Zur Bestimmung der Bindungsenergie legen die Physiker die Atomkerne gleichsam auf die Waage, um so den Massendefekt mit hoher Präzision zu vermessen. Als ideale Waage hat sich dabei die Penningfallen-Massenspektrometrie erwiesen. Die zu untersuchenden Atomkerne wurden vom Isotopenseparator ISOLDE am CERN bereitgestellt und in der Penning-Ionenfalle ISOLTRAP zur Massenbestimmung eingefangen. „Eine experimentelle Herausforderung stellen die oft recht kurzen Halbwertszeiten der betrachteten Isotope dar, was derzeit noch die Messgenauigkeit einschränkt“, erläutert Klaus Blaum. Das Ergebnis für die Krypton-Isotope 96Kr und 97Kr, deren Masse erstmals bestimmt wurde, zeigt, dass hier im Gegensatz zur benachbarten Reihe der Rubidium-Isotope (Z=37) kein Phasenübergang mehr beobachtet wird (Abb. 1). Damit ist eine untere Grenze, gefunden, was die Abhängigkeit von der Kernladung angeht, und zugleich wird demonstriert, welches Potential die Penningfallen-Massenspektrometrie für die Erforschung von Kernmaterie bietet.

Beim nächsten Experiment wollen die Forscher eine andere Kerneigenschaft aufspüren: den Schalenabschluss bei der „magischen“ Neutronenzahl N=28 im Bereich der Kernmasse von Argon. Auch hier handelt es sich um einen Quanteneffekt, der über das einfache Tröpfchenmodell hinausgeht und durch eine erhöhte Bindungsenergie gekennzeichnet ist – ähnlich den Schalenabschlüssen in der Atomhülle bei Edelgasen, die sich chemisch sehr stabil verhalten.

Originalveröffentlichung:
S. Naimi, G. Audi, D. Beck, K. Blaum. Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, D. Neidherr, M. Rosenbusch, S. Schwarz, L. Schweikhard and K. Zuber
Critical-Point Boundary for the Nuclear Quantum Phase Transition Near A = 100 from Mass Measurements of 96,97Kr

Physical Review Letters, 105, 032502 (2010)

Kontakt:
Prof. Dr. Klaus Blaum
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 6221 516-850
Fax: +49 6221 516-852
E-Mail: klaus.blaum@mpi-hd.mpg.de

Dr. Bernold Feuerstein | idw
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.105.032502
http://www.mpi-hd.mpg.de/blaum/index.de.html
http://isoltrap.web.cern.ch/isoltrap/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode verpasst Mikroskop einen Auflösungsschub
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Supercomputer ohne Abwärme
07.12.2018 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

Plastics Economy Investor Forum: Treffpunkt für Innovationen

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Klein und vielseitig: Schlüsselorganismen im marinen Stickstoffkreislauf nutzen Cyanat und Harnstoff

10.12.2018 | Studien Analysen

Ungesundes Sitzen vermeiden: Stuhl erkennt Sitzposition und motiviert zur Änderung der Körperhaltung

10.12.2018 | Energie und Elektrotechnik

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics