Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jülich forscht an der stärksten Neutronenquelle

23.02.2011
Wissenschaftler aus dem Forschungszentrum Jülich können für ihre Experimente demnächst die stärkste Neutronenquelle der Welt nutzen. Bei seiner jüngsten Reise nach China besuchte Vorstandsmitglied Prof. Sebastian M. Schmidt den Forschungsreaktor CARR in Fang Shan bei Peking. Dort installierten Physiker und Ingenieure vom Jülich Centre for Neutron Science (JCNS) drei Geräte, die in Kürze in Betrieb gehen.

Die Geräte aus Jülich sind zwei Einkristall-Diffraktometer und ein Neutronen-Dreiachsenspektrometer zur Erforschung von Dynamik und Magnetismus kondensierter Materie. Sie gehen mit dem Forschungsreaktor CARR (Chinese Advanced Research Reactor) in Betrieb. CARR wird mit einer Leistung von 60 MW die Neutronenquelle mit dem stärksten Neutronenfluss der Welt sein und löst damit den Forschungsreaktor am Institut Laue-Langevin (ILL) in Grenoble ab. Der Neutronenfluss soll im Juni starten.

„Die Neutronenstreuung ist für China noch eine relativ neue Methode. Wir freuen uns, dass wir unsere Partner am CIAE beim Aufbau ihrer Neutronenforschung unterstützen können. Forschung mit Neutronen ist inzwischen eine Schlüsseltechnologie für Wissenschaftler auf fast allen Gebieten“, sagte Schmidt. Mit Neutronen kann man tief ins Innere von Materie blicken. Sie sind daher idealen Sonden, um Materie auf der Ebene von Atomen zu untersuchen. Forschung mit Neutronen bereitet den Weg für die Entwicklung magnetischer Materialien für die Computerspeicher von morgen, von umweltfreundlichen Reinigern für Industrie und Haushalt, für die Stromgewinnung aus der Abwärme von Motoren oder das bessere Verständnis biomolekularer Vorgänge in Zellen.

Jülich kann dabei bis 2017 30 Prozent der Strahlzeit nutzen und ist Mitglied in dem Komitee, das über die Vergabe weiterer 30 Prozent entscheidet. „Die erfolgreiche Kooperation mit dem CIAE kann ein erster Schritt hin zu einer Zusammenarbeit mit anderen exzellenten wissenschaftlichen Instituten in China sein, so zum Beispiel mit dem renommierten Institute of Physics“, so Schmidt. Das IOP gilt als eines der weltweit führenden Institutionen für anwendungsnahe physikalische Grundlagenforschung wie Festkörperphysik, weiche Materie, Materialforschung und Energiespeichersysteme.

Neutronen sind elektrisch neutrale Bausteine der Atomkerne. Sie werden in Forschungsreaktoren oder Spallationsquellen erzeugt und auf die zu untersuchenden Proben gelenkt. An den Atomen und Molekülen der Proben werden sie gestreut, wobei sie ihre Richtung und Geschwindigkeit ändern. Die Neutronenstreuung gibt Auskünfte über die Anordnung und Bewegung der Atome, die Methoden wie Röntgen oder Elektronenmikroskopie verborgen bleiben.

Informationen zur Jülicher Neutronenforschung:
http://www.jcns.info/
Pressekontakt:
Erhard Zeiss
Tel.: 02461 611841
e.zeiss@fz-juelich.de
Das Forschungszentrum Jülich…
… betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 600 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Erhard Zeiss | FZ Jülich
Weitere Informationen:
http://www.jcns.info/
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

nachricht Was Einstein noch nicht wusste
20.09.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bei Depressionen ist Hirnregion zur Stresskontrolle vergrößert

20.09.2018 | Biowissenschaften Chemie

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungsnachrichten

Was Einstein noch nicht wusste

20.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics