Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ionenantrieb für Kleinstsatelliten vorgestellt

20.08.2012
Centgroße Düse lässtt CubeSats brav abstürzen

Ingenieure am Massachusetts Institute of Technology (MIT) haben einen Ionenantrieb für Minisatelliten entwickelt. Die Düse, die etwa die Größe einer Centmünze hat, ist insbesondere für die zehn mal zehn mal zehn Zentimeter großen CubeSats gedacht, die sich großer Beliebtheit für universitäre Forschungsprojekte erfreuen. Dem MIT-Team um Aeronautik-Professor Paulo Lozano nach soll der Antrieb diese Satelliten beweglicher machen und beispielsweise einen kontrollierten Absturz am Ende der Missionsdauer erlauben - als eine Art Müllvermeidung im Weltraum.


Zwei Ionenantriebe: bereiten sich auf Tests vor (Foto: M. Scott Brauer)

"Das Thema 'Space Debris', also Weltraummüll, ist im Moment sehr heiß in der Raumfahrt-Community", bestätigt Claas Olthoff, Leiter des CubeSat-Projekts "First-Move" http://move.lrt.mw.tum.de am Lehrstuhl für Raumfahrttechnik der TU München, gegenüber pressetext. Denn verwaiste Satelliten sind eine potenzielle Gefahr für andere Missionen. Kontrollierte Abstürze zu nutzen, sieht der Raumfhrttechniker daher als logische Anwendungsmöglichkeit für den MIT-Antrieb.

Kapillar-Schub

Der MIT-Antrieb ist ein Chip, der aus mehreren Lagen porösen Materials besteht. Die oberste Schicht umfasst 500 metallische Spitzen, zuunterst befindet sich ein Reservoir mit freien Ionen. Das Funktionsprinzip beruht auf Kapillarwirkung: Im Chip werden die Poren von Materialschicht zu Materialschicht kleiner, sodass die Ionen bis zu den Metallspitzen gesaugt werden. Die Stärke einer angelegten Spannung regelt dabei die Intensität des Ionenstrahls, der von den Spitzen abgegeben wird und für Schub sorgt. Auf der Erde wäre damit zwar allenfalls ein Papierschnitzel zu bewegen, in der Schwerelosigkeit reicht es für Kleinstsatelliten.

Der Antrieb kann einem ausgedienten CubeSat einen Stoß in Richtung Erdatmosphäre geben, in der er dann harmlos verglüht. Ansonsten umkreist der Satellit womöglich jahrelange als Weltraummüll die Erde. Prinzipiell ist der MIT-Ionenantrieb auch für andere Manöver wie Kurskorrekturen geeignet. Allerdings ist es laut Olthoff die Frage, wie groß der Bedarf daran bei CubeSats ist. "Um das System als Lageregelungssystem zu verwenden, also um den Satelliten auf ein bestimmtes Ziel auszurichten, muss zuerst bewiesen werden, dass es Vorteile gegenüber den bereits bestehenden Systemen gibt. Das sind momentan Magnetotorquer und Reaktionsräder", meint der Experte.

Beliebte Winzlinge

Der CubeSat-Standard wurde im Jahr 2000 definiert und soll Universitäten ermöglichen, eigene, kleine Satelliten zu Forschungs- und Ausbildungszwecken zu bauen. Der Erfolg gibt der Idee Recht. "Es kam zur Bildung einer Entwicklergemeinschaft und eines kleinen Marktes für technische Komponenten, die speziell für CubeSats zugeschnitten sind. Viele Förderstellen haben Gelder für universitäre Kleinsatelliten zur Verfügung gestellt oder bieten kostenlose Startmöglichkeiten an", erklärt Olthoff. "Dieses Angebot wird von sehr vielen Studenten begeistert angenommen."

Schon jetzt befinden sich Dutzende CubeSats im Erdorbit, darunter der erste Schweizerische Satellit (pressetext berichtete: http://pte.com/news/090924003/ ). Etliche weitere wie jener des Münchner First-MOVE-Projekts sollen in den nächsten Jahren folgen. Erst vergangene Woche hat die NASA wieder bekannt gegeben, dass sie CubeSats als potenzielle zusätzliche Payload bei Raketenstarts bis 2016 sucht.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.cubesat.org
http://www.mit.edu

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten

18.02.2020 | Biowissenschaften Chemie

Kleber für gebrochene Herzen

18.02.2020 | Biowissenschaften Chemie

Forschende entdecken eine neue biochemische Verbindung, die Umweltschadstoffe abbauen kann

18.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics