Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Künstlerische Darstellung des mit Lichtpulsen gesteuerten Phasenübergangs von Indium-Atomen auf einem Siliziumkristall. Dr. Murat Sivis

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall anschließend auf -220 Grad Celsius ab.

Während die Indium-Atome bei Raumtemperatur metallisch leitende Ketten auf der Oberfläche bilden, ordnen sie sich bei solch niedrigen Temperaturen spontan zu elektrisch isolierenden Sechsecken um.

Dieser Prozess wird als Übergang zwischen zwei Phasen – der metallischen und der isolierenden – bezeichnet und kann mit Laserpulsen geschaltet werden. In ihren Experimenten beleuchteten die Forscher nun die kalte Oberfläche mit zwei kurzen Laserpulsen und beobachteten direkt im Anschluss die Anordnung der Indium-Atome mit Hilfe eines Elektronenstrahls.

Dabei fanden sie heraus, dass der Rhythmus der Laserpulse einen großen Einfluss darauf hat, wie effizient die Oberfläche in den metallischen Zustand geschaltet werden kann.

Dieser Effekt lässt sich durch Schwingungen der Atome an der Oberfläche erklären, wie Erstautor Jan Gerrit Horstmann erläutert: „Um von dem einen in den anderen Zustand zu gelangen, müssen sich die Atome in unterschiedliche Richtungen verschieben und dabei ähnlich einer Achterbahnfahrt eine Art Hügel überwinden.

Ein einzelner Laserpuls reicht hierfür jedoch nicht aus, und die Atome schwingen lediglich hin und her. Wie bei einer Schaukelbewegung können wir jedoch mit einem zweiten Puls zum richtigen Zeitpunkt genug Energie in das System geben, um den Übergang zu ermöglichen.“

In ihren Experimenten beobachteten die Physiker gleich mehrere Schwingungen der Atome, die die Umwandlung in ganz unterschiedlicher Weise beeinflussen.

Ihre Erkenntnisse tragen nicht nur zum grundlegenden Verständnis von schnellen Strukturänderungen bei, sondern eröffnen auch weitergehende Perspektiven für die Oberflächenphysik.

„Unsere Ergebnisse zeigen neue Strategien auf, um die Umwandlung von Lichtenergie auf der atomaren Skala zu kontrollieren“, sagt Ropers, Arbeitsgruppenleiter am IV. Physikalischen Institut der Universität und Direktor am Max-Planck-Institut für biophysikalische Chemie.

„Das gezielte Steuern der Bewegungen von Atomen in Festkörpern mit Hilfe von Laserpuls-Sequenzen könnte es darüber hinaus ermöglichen, bisher unzugängliche Strukturen mit vollkommen neuen physikalischen und chemischen Eigenschaften zu erreichen.“

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Europäischen Forschungsrat gefördert.

Prof. Dr. Claus Ropers
Max-Planck-Institut für biophysikalische Chemie und
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon 0551 3924549
E-Mail: claus.ropers@uni-goettingen.de

Jan Gerrit Horstmann
Telefon: 0551 3921485
E-Mail: jan-gerrit.horstmann@uni-goettingen.de
www.uni-goettingen.de/de/598878.html

J. G. Horstmann et al: Coherent control of a surface structural phase transition. Nature 2020 Doi: https://www.nature.com/articles/s41586-020-2440-4

Media Contact

Thomas Richter idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer