Mit High-Speed-CMOS-Sensoren sieht man besser

Hier kommen die High-Speed-CMOS-Sensoren zum Steuern von Produktionsmaschinen zum Einsatz.<br>© Fraunhofer IMS<br>

Längst haben CMOS-Bildsensoren in der Digitalfotografie den Markt erobert. In der Herstellung sind sie wesentlich günstiger als bisherige Sensoren. Auch in Sachen Stromverbrauch und Handhabung sind sie überlegen. Deshalb verbauen die großen Hersteller von Handy- und Digitalkameras fast ausschließlich nur noch CMOS-Chips in ihre Produkte.

Das schont den Akku – und die Kameras werden immer kleiner. Doch die optischen Halbleiterchips stoßen mitunter an ihre Grenzen: Während die Miniaturisierung in der Unterhaltungselektronik zu immer kleineren Pixelgrößen von etwa 1 Mikrometer führt, sind bei bestimmten Anwendungen größere Pixel von mehr als 10 Mikrometer gefragt. Besonders in Bereichen, in denen nur wenig Licht zur Verfügung steht, wie in der Röntgenfotografie oder in der Astronomie, gleicht die größere Pixelfläche den Lichtmangel aus. Für die Umwandlung der Lichtsignale in elektrische Impulse sorgen Pinned-Photodioden (PPD).

Diese optoelektrischen Bauelemente sind für die Bildverarbeitung wesentlich und werden in die CMOS-Chips eingebaut. »Doch wenn die Pixel eine bestimmte Größe überschreiten, haben die PPD ein Geschwindigkeitsproblem«, erklärt Werner Brockherde, Abteilungsleiter am Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS. Denn meistens erfordern lichtschwache Anwendungen hohe Bildraten. »Dafür ist die Auslesegeschwindigkeit mit PPD jedoch zu gering«, sagt Brockherde.

Für dieses Problem haben die Fraunhofer-Forscher jetzt eine Lösung gefunden – sie ist bisher einzigartig und bereits patentiert: Die Wissenschaftler haben ein neues optoelektronisches Bauelement entwickelt, LDPD genannt – »Lateral drift field Photodetector«. »Darin wandern die durch das einfallende Licht erzeugten Ladungsträger mit High-Speed zum Ausgang«, erklärt der Forscher. Bei der PPD diffundieren die Elektronen lediglich zum Ausleseknoten. Ein vergleichsweise langsamer Prozess, der für viele Anwendungen ausreicht. »Indem wir aber innerhalb des photoaktiven Bereichs ein elektrisches Spannungsfeld in das Bauelement integriert haben, konnten wir diesen Vorgang bis zum hundertfachen beschleunigen.«

Um das neue Bauelement realisieren zu können, erweiterten die Fraunhofer-Forscher den derzeit verfügbaren 0,35 µm-Standard-CMOS-Prozess zur Herstellung der Chips: »Das zusätzliche LDPD-Bauelement darf die Eigenschaften der restlichen Bauteile nicht beeinträchtigen«, sagt Brockherde. Mithilfe von Simulationsberechnungen gelang es den Experten, diesen Anforderungen zu genügen – ein Prototyp der neuen High-Speed-CMOS-Bildsensoren ist bereits verfügbar. »Die Freigabe für die Serienfertigung erwarten wir für nächstes Jahr«, so Brockherde.

Die High-Speed-CMOS-Sensoren sind ideale Kandidaten für Anwendungen, in denen großflächige Pixel und eine hohe Auslesegeschwindigkeit erforderlich sind: Nicht nur in der Astronomie, bei der Spektroskopie oder in der modernen Röntgenfotografie könnten sie zum Einsatz kommen. Sie eignen sich auch hervorragend als 3D-Sensoren, die nach dem Time-of-Flight-Verfahren arbeiten. Dabei senden Lichtquellen kurze Impulse aus, die von den Objekten reflektiert werden. Die Laufzeit des reflektierten Lichts wird dann von einem Sensor erfasst und ergibt ein ganzheitliches 3D-Bild. Diese Technologie ist etwa beim Thema Aufprallschutz von Interesse. Denn die Sensoren können das Umfeld dreidimensional exakt erfassen. Für die TriDiCam GmbH haben die Fraunhofer-Forscher bereits einen solchen Flächensensor mit der einzigartigen Pixelanordnung entwickelt.

Media Contact

Fraunhofer Mediendienst

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraschnelle Elektronenmikroskope der nächsten Generation

Forschung der Kieler Physikerin Nahid Talebi wird von der VolkswagenStiftung mit rund 920.000 Euro gefördert. Mit Elektronenmikroskopen untersuchen Wissenschaftlerinnen und Wissenschaftler das Innere von Materialien mit ultrahoher räumlicher Auflösung. Möglichst…

Forschende enthüllen neue Funktion von Onkoproteinen

Forschende der Uni Würzburg haben herausgefunden: Das Onkoprotein MYCN lässt Krebszellen nicht nur stärker wachsen, sondern macht sie auch resistenter gegen Medikamente. Für die Entwicklung neuer Therapien ist das ein…

Mit Kleinsatelliten den Asteroiden Apophis erforschen

In fünf Jahren fliegt ein größerer Asteroid sehr nah an der Erde vorbei – eine einmalige Chance, ihn zu erforschen. An der Uni Würzburg werden Konzepte für eine nationale Kleinsatellitenmission…

Partner & Förderer