Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herschel findet die jüngsten Protosterne

19.03.2013
Eine Gruppe von Astronomen unter der Leitung von Amelia Stutz vom Max-Planck-Institut für Astronomie in Heidelberg hat das Herschel Space-Teleskop und das Submillimeter-Teleskop APEX genutzt, um die jüngsten bislang bekannten Protosterne zu entdecken und zu charakterisieren: stellare Embryos, die tief in dichte Staub-Kokons eingebettet sind. Die Entdeckung verspricht neue Einblicke in die frühesten Stadien der Sternentwicklung, und damit auch Aufschluss über die Entstehung unseres eigenen Heimatsterns, der Sonne. Die Arbeit erscheint in der Fachzeitschrift Astrophysical Journal.

Sterne werden im Verborgenen geboren: hinter Staubschichten, tief im Inneren der Molekülwolken, aus deren Kollaps sie entstehen. Je jünger ein zukünftiger Stern (»Protostern«) ist, desto schwieriger ist es, ihn zu beobachten.


Drei der PACS Bright Red Sources (PBRS), die mit dem Weltraumteleskop Herschel gefunden wurden. Dabei dürfte es sich um einige der jüngsten bekannten Protosterne überhaupt handeln. Das Feld ganz links zeigt ein vom Weltraumteleskop Spitzer (bei 24 µm) aufgenommenes Bild, in welchem die beiden oberen Objekte vollständig unsichtbar sind, während das untere sich nicht eindeutig als Protostern identifizieren lässt. Die beiden rechten Felder zeigen Bilder vom Weltraumteleskop Herschel (bei 70 µm) und vom Submillimeterteleskop APEX (bei 350 µm), mit denen nachgewiesen werden konnte, dass es sich in der Tat um einige der jüngsten bekannten Protosterne handelt.
Bild: A. M. Stutz (MPIA)

In den letzten Jahren haben sich Astronomengruppen mit Hilfe immer höher entwickelter Infrarot-Technologie einen regelrechten Wettlauf geliefert, Protosterne in immer früheren Entwicklungsstadien zu entdecken. Jetzt hat eine Gruppe von Astronomen das Weltraumteleskop Herschel und das Submillimeter-Teleskop APEX genutzt, um die jüngsten bislang bekannten Protosterne zu entdecken und zu charakterisieren.

Einer der beteiligten Astronomen, Tom Megeath von der University of Toledo, Ohio, erinnert sich: »Die Entdeckung war ein echter Glücksfall. Ich hatte mir Bilder angesehen, die mit den Weltraum-Teleskopen Spitzer und Herschel aufgenommen wurden und einen kürzlich entdeckten interessanten Protostern in Orion zeigten, dessen Leuchtkraft sich mit der Zeit ändert. Auf dem ersten Herschel-Bild, das ich mir ansah, war dieser Protostern deutlich zu sehen – aber direkt daneben fand sich überraschender Weise noch ein weiteres Objekt, das auf den Bildern des Spitzer-Teleskops schlichtweg fehlte.«

Dass das Objekt auf den Spitzer-Bildern nicht zu sehen war, hängt damit zusammen, dass Spitzer bei kürzeren Wellenlängen beobachtet als Herschel. Dass ein Objekt bei längeren Wellenlängen hell leuchtet, bei kürzeren dagegen unsichtbar ist, gibt Physikern Hinweise auf seine Temperatur. Menschen zum Beispiel emittieren durch ihre Körpertemperatur von etwa 37 °C infrarotes, aber kein sichtbares Licht. Die Unsichtbarkeit auf den Spitzer-Bildern legte nahe, dass es sich bei dem Objekt auf dem Herschel-Bild um einen außergewöhnlich kalten Protostern handeln könnte. Das waren aufregende Aussichten, denn bei so geringen Temperaturen müsste es sich um einen Protostern in einem viel früheren Entwicklungsstadium handeln, als es jemals zuvor beobachtet worden war.

Nach dieser ersten vielversprechenden Entdeckung durchkämmte Stutz sorgfältig die Orion-Daten, um zu sehen, ob sich weitere Exemplare solcher Objekte aufspüren ließen. Am Ende kam sie auf insgesamt 55 solcher anscheinend sehr kalten Objekte.

Aber das Universum hat einen zusätzlichen Trick auf Lager. Sehr weit entfernte kosmische Objekte erscheinen »rotverschoben« – aufgrund der kosmischen Expansion werden die Wellenlängen ihres Lichtes gestreckt. Das kann dazu führen, dass eine sehr weit entfernte gewöhnliche Galaxie so ähnlich aussieht wie ein sehr kalter, aber ungleich näherer Protostern. Stutz erklärt: »Wir mussten die Spreu vom Weizen trennen und die echten Protosterne ausfindig machen. Und wir wussten, dass dies nur mit mehr Daten möglich war. Aus diesem Grund griffen wir auf APEX zurück – ein Teleskop, das sogar noch langwelligeres Licht empfängt als Herschel.« Die APEX-Antenne befindet sich in der Atacama-Wüste in Chile und wird von der Europäischen Südsternwarte (ESO) betrieben.

Mit den kombinierten Daten und durch sorgfältigen Vergleich ihrer Beobachtungen mit physikalischen Modellen von Protosternen und ähnlichen Objekten reduzierten Stutz und ihre Kollegen ihre Liste auf 15 zuverlässig identifizierte neue Protosterne. Die rötesten Quellen tauften sie nach dem Herschel-Instrument PACS, mit dem diese Entdeckungen gelungen waren, »PACS Bright Red Sources« (kurz PBRS). Diese Quellen waren aufgrund ihrer geringen Temperatur vom Spitzer-Teleskop nicht als Protosterne zu identifizieren gewesen – einige von ihnen sind auf den Spitzer-Bildern einfach unsichtbar.

Den Analysen von Stutz und ihren Kollegen nach sind dies die jüngsten Protosterne, die bislang beobachtet wurden: staubige Gashüllen mit Massen zwischen 0,2- bis 2-Mal der Sonnenmasse, die von einem tief im Inneren eingebetteten Protostern auf etwa 20 °C über dem absoluten Nullpunkt (20 K) aufgeheizt werden.

Stutz sagt dazu: »In den frühesten Stadien sammelt der Protostern den Großteil seiner Masse an. Aber diese Stadien sind gleichzeitig am schwierigsten zu beobachten. Bislang konnten die Theoretiker die Vorhersagen ihrer Sternentstehungsmodelle ein Modell über Sternentstehung aufstellte, gab es keinen direkten Weg, das, was das Modell über die frühesten Stadien sagte, mit Beobachtungen zu vergleichen. Diese Lücke schließen wir jetzt – und das ist immer eine gute Sache, wenn man wissen möchte, was wirklich vor sich geht.«

Die Astronomengruppe um Stutz hat bereits die nächsten Schritte eingeleitet. Das sind zum einen Nachfolgebeobachtungen mit Herschel an acht der PBRS, um nach Spuren von Gas-Ausflüssen zu suchen, die für diese frühen Prototypen vorhergesagt wurden. Zum anderen wollen sie mit dem Green-Bank-Radioteleskop Licht bei Wellenlängen empfangen, die für dichtere Ansammlungen von Gasmolekülen charakteristisch sind. Zusätzlich hoffen die Astronomen auf Beobachtungszeit an ALMA, dem Netz aus Submillimeter-Antennen, das sich zur Zeit noch in der Atacama-Wüste im Aufbau befindet: ALMA sollte in der Lage sein, feinere Details der Hüllen darzustellen und genauere Messungen ihrer Dichte zulassen.

Stutz fasst zusammen: »Es ist immer aufregend, neue Arten von Objekten wie unsere PBRS zu finden – insbesondere dann, wenn sie Informationen über etwas so Fundamentales wie die Geburt von Sternen versprechen. Sowohl unsere Entdeckung als auch das Potential für weitergehende Beobachtungen zeigt, dass dies interessante Zeiten für Astronomen sind. Diese Quellen konnten wir nur mit Herschel entdecken. Und nur mit ALMA ist es möglich, sie im Detail zu untersuchen.«

Kontakt

Amelia Stutz (Erstautorin)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 412
E-Mail: stutz@mpia.de
Axel M. Quetz (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Heidelberg
Telefon: (+49|0) 6221 – 528 158
E-Mail: pr@mpia.de

Markus Pössel | Max-Planck-Institut
Weitere Informationen:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2013/PR_2013_03/PR_2013_03_de.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics