Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen auf Ladungsentzug

12.07.2010
Max-Planck-Forscher befreien Graphen von elektrischer Ladung, damit es seine Halbleiter-Eigenschaften zeigt

Immer kleiner, schneller und belastbarer - so soll die Zukunft der Elektronik aussehen. Forscher des Max-Planck-Instituts für Festkörperforschung in Stuttgart tragen mit aktuellen Arbeiten dazu bei, dass sich diese Hoffnung erfüllt. Sie haben Wege gefunden, Graphen von elektrischen Ladungen zu befreien. Graphen nennen Materialwissenschaftler Kohlenstoffschichten, die nicht dicker als eine oder einige wenige Atomlagen sind.


Wasserstoffatome drängeln sich in die Bindung zwischen Silicium (violett) und Graphen (blau). Anschließend liegt Graphen ungeladen und stabil auf der Unterlage. In der rechts eingeklinkten Bandstruktur erkennen die Forscher, dass monolagiges Graphen nach der Wasserstoffbehandlung nicht zum Halbleiter wird. Bild: Max-Planck-Institut für Festkörperforschung


Von metallischem zu halbleitendem Graphen: F4-TCNQ(oben) saugt die Ladung aus der Siliciumcarbid-Graphen-Verbindung (unten). In der Bandstruktur von mehrlagigem Graphen vergößert sich so die Bandlücke (rechtes Bild) - ein typisches Zeichen für einen Halbleiter. Bild: Max-Planck-Institut für Festkörperforschung

Einlagiges Graphen wird so zum Halbmetall, zweilagiges zeigt dann die Eigenschaften eines Halbleiters. Die Stuttgarter Forscher präparierten Graphen großflächig auf einer Unterlage aus Siliciumcarbid und beeinflussten seine Leitfähigkeit zum einen gezielt, indem sie an die Kohlenstoff-Blätter Moleküle der organischen Substanz F4-TCNQ hefteten. Zum anderen stellten sie das Material in einer Form her, in der es sich erst gar nicht elektrisch auflädt. Vor allem doppellagiges Graphen wird damit auch technisch interessant: Es könnte Silicium ersetzen, da es sich zu viel kleineren Transistoren, den elementaren Bauteilen eines Mikrochips, verarbeiten lässt. (Physical Review, 1. Juni 2010 und Physical Review Letters, 10. Dezember 2009)

Ein einfacher Weg nützt wenig, wenn er knapp am Ziel vorbeiführt. So lässt sich Graphen recht leicht in reiner Form und relativ großen Schichten auf einer Unterlage aus Siliciumcarbid abscheiden. Doch für weiterführende Experimente und die technischen Anwendungen, denen es einmal dienen soll, eignet es sich so nicht: Die Ladungsträger in ungeladenem einlagigem Graphen benehmen sich als ob sie keine Masse hätten. Die physikalischen Effekte, die dadurch entstehen, möchten Forscher in Zukunft genauer untersuchen. Zwei Lagen des vernetzten Kohlenstoffs sollen außerdem als Halbleiter einmal zu kleineren elektronischen Bauteilen verarbeitet werden, als sie sich aus Silicium herstellen lassen. Doch auf der Unterlage aus Siliciumcarbid lädt sich Graphen elektrisch auf, und wird so zum metallischen Leiter - für die Halbleiterindustrie sowie für weitere Untersuchungen der scheinbar masselosen Ladungsträger ist es damit unbrauchbar. Ulrich Starke und sein Team um Camilla Coletti und Christian Riedl am Max-Planck-Institut für Festkörperforschung in Stuttgart können das verhindern: Sie haben Mittel gefunden, das Graphen auf der Siliciumcarbid-Unterlage von seiner Ladung zu befreien.

Einer ihrer Ansätze packt das Problem da, wo es entsteht. Denn zwischen den Siliciumatomen der Unterlage und den Graphenschichten bilden sich chemische Bindungen. Das führt schließlich dazu, dass sich Ladung ins Graphen fließt. Diesen Ladungstransport unterbrechen die Stuttgarter Forscher, indem sie die Bindungen zwischen Graphen und Silicium kappen. Zu diesem Zweck leiten sie Wasserstoffgas über das Materialduo; die Wasserstoffatome drängeln sich mühelos zwischen die Siliciumatome und die Kohlenstoffblätter. "Auf diese Weise erhalten wir das Graphen stabil auf seiner Unterlage und gleichzeitig doch so lose, dass es ladungsfrei ist", sagt Christian Riedl. Auch mehrere Kohlenstofflagen können die Forscher auf dem Siliciumcarbid stapeln und deren Verbindung zur Unterlage trennen.

Die Stuttgarter Wissenschaftler haben aber auch einen Weg gefunden, das Graphen zu entladen, ohne es vom Siliciumcarbid zu entkoppeln. Sie dampften Tetrafluorotetracyanoquinodimethan (F4-TCNQ) auf das Graphen. Die Moleküle der organischen Fluorverbindung heften sich an das Graphen und saugen die Ladung von den Kohlenstoffschichten ab. Während die Forscher immer mehr Moleküle an die Oberfläche heften, wird einlagiges Graphen zum Halbmetall, nimmt aber nicht die elektronischen Eigenschaften eines Halbleiters an. Das erreichen die Forscher jedoch in zweilagigem Graphen, das sich mit einer zunehmenden F4-TCNQ-Beladung allmählich vom metallischen Leiter zum Halbleiter wandelt. "Mit unterschiedlichen Mengen F4-TCNQ können wir die Leiteigenschaften des Graphen präzise einstellen", sagt Camilla Coletti, die die Experimente vorgenommen hat. Wenn zweilagiges Graphen, das technisch viel verspricht, mit der größtmöglichen Menge F4-TCNQ bedeckt ist, behält es die Eigenschaften eines Halbleiters sogar noch bei 200 Grad Celsius.

Dokumentiert haben die Wissenschaftler den Wandel der elektronischen Eigenschaften, indem sie die Bandstruktur des Graphen bestimmten, und zwar sowohl nach der Behandlung mit Wasserstoff als auch für unterschiedliche Mengen F4-TCNQ, die sie auf dem Material ablagerten. Die Bandstruktur ist eine Art Fingerabdruck der elektronischen Struktur und verrät, mit welchen Energien die Elektronen in einem Material gebunden sind. Abbilden lässt sie sich mit einer Methode namens winkelaufgelöster Photoelektronenspektroskopie. Dabei schlagen Photonen aus ultraviolettem Licht Elektronen aus dem Material. Die kinetische Energie und der Winkel davonfliegender Elektronen lassen sich messen; daraus ergibt sich unter anderem die Bindungsenergie der Elektronen und damit die Bandstruktur. "Die Messungen haben gezeigt, dass das F4-TCNQ die überschüssige Ladung aus dem Graphen vollständig aufnimmt", sagt Camilla Coletti.

"Mit den neuen Methoden, können wir in ganz neue Forschungsrichtungen denken", sagt Ulrich Starke. So erhoffen sich die Forscher Fortschritte in der Spinelektronik; etwa indem sie magnetische Materialien an das Graphen lagern. Die Spinelektronik nutzt im Gegensatz zur herkömmlichen Elektronik das magnetische Moment eines Elektrons und nicht seine Ladung, um Information zu verarbeiten. Auch für Kohlenstofftransistoren könnte das Graphen dank der Entladung nun noch interessanter werden. Ulrich Starke erklärt: "Wenn wir es schaffen den Graphenschichten beizubringen sich so anzuordnen, wie wir es wollen, könnten wir Transistoren entwickeln, die nur mit einem Elektron schalten."

Originalveröffentlichung:

Camilla Coletti, Christian Riedl, Dong-Su Lee , Benjamin Krauss, Luc Patthey, Klaus von Klitzing, Jurgen H. Smet, Ulrich Starke
Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping

Physical Review, B 81, 235401 _2010_Vol. 4, 2010-17 (1. Juni 2010)

Christian Riedl, Camilla Coletti, Takayuki Iwasaki, Alexei Zakharov, Ulrich Starke
Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation
Physical Review Letters 103, 246804 (10. Dezember 2009)
Weitere Informationen erhalten Sie von:
Ulrich Starke
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 (0)711-689-1345
E-Mail: u.starke@fkf.mpg.de
Camilla Coletti, Ph.D.
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 (0)711-689-1346
E-Mail: c.coletti@fkf.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung erstmals mit Licht von Quasaren bestätigt
20.08.2018 | Österreichische Akademie der Wissenschaften

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenverschränkung erstmals mit Licht von Quasaren bestätigt

20.08.2018 | Physik Astronomie

1,6 Millionen Euro für den Aufbau einer Forschungsgruppe zu Quantentechnologien

20.08.2018 | Förderungen Preise

IHP-Technologie darf in den Weltraum fliegen

20.08.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics