Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freie-Elektronen-Laser auf dem Weg zum Molekül-Kino

19.11.2012
Mit ultrakurzen Röntgenblitzen eröffnen Freie-Elektronen-Laser die Möglichkeit, chemische Reaktionen zu filmen und die Bewegung von Atomen zu beobachten.
Für diese Super-Zeitlupe müssen allerdings Ankunftszeit und zeitliches Profil der Röntgenblitze genau bekannt sein. Ein internationales Forscherteam hat jetzt ein Messverfahren entwickelt, um das zeitliche Profil einzelner Röntgenpulse von DESYs Freie-Elektronen-Laser FLASH mit Femtosekunden-Präzision zu messen. Diese Technik kann an jedem Freie-Elektronen Röntgenlaser der Welt eingesetzt werden. Das Forscherteam berichtet im Fachblatt „Nature Photonics“ über seine Ergebnisse.

Die extrem hellen und ultrakurzen Röntgenpulse aus Freie-Elektronen-Lasern (FEL) bieten einzigartige Forschungsmöglichkeiten. Billionen von Photonen sind in einem Blitz gebündelt – einem Puls von höchstens einigen Dutzend Femtosekunden Dauer. Allerdings können sich die genaue Ankunftszeit und sogar das zeitliche Profil der FEL-Pulse enorm von einem Puls zum nächsten verändern. Um den Röntgenlaser zum „Filmen“ ultraschneller dynamischer Prozesse zu nutzen, muss die Ankunftszeit jedes einzelnen Pulses gemessen werden. Nur so lassen sich die Einzelbilder, die mit jedem Blitz aufgenommen werden, korrekt zeitlich ordnen.
Mit Hilfe eines präzisen Timings sind Femtosekunden-FEL-Röntgenpulse so kurz, dass Atome in Bewegung, chemische Reaktionen und Phasenübergänge in Materialien mit atomarer Auflösung im Femtosekundenbereich beobachtet werden können. Die gleichzeitige Messung des Puls-Profils bietet darüber hinaus die Möglichkeit, selbst Veränderungen während der Belichtung einzelner Bilder zu verfolgen. Auf diesen Zeitskalen sind bereits die Bewegung der Elektronen und die Dynamik der Elektronenzustände von Bedeutung. Die Dynamik der Elektronen kann etwa Biomoleküle schädigen und unter Umständen zerstören, noch bevor ein kristallklares Bild aufgenommen werden konnte.

Für ihre Messungen haben die Wissenschaftler, die außer von DESY und CFEL auch von European XFEL, der Universität Hamburg und SLAC kommen, die in der Attosekundenphysik (eine Attosekunde ist eine tausendstel Femtosekunde) angewandte Methode des sogenannten Photoelektron-Streaking adaptiert. Damit lassen sich Profile zeitlich variierender Lichtsignale aufzeichnen. Dank der enormen Intensität der FEL-Blitze konnten die Forscher diese Messungen bei FLASH sogar von einzelnen Pulsen durchführen. Dafür wurden die Röntgenblitze auf dem Weg zu ihrem Ziel durch Neon-Gas geschossen. Jeder Puls erzeugt eine Salve von Photoelektronen, die aus dem Edelgas herausgeschlagen werden. Das zeitliche Profil dieser Photoelektronen entspricht demjenigen des Pulses.

Ein Terahertz-Feld beschleunigt Photoelektronen, die vom Freie-Elektronen-Röntgenlaser aus Neonatomen geschlagen wurden. Auf diese Weise lassen sich Profil und Ankunftszeit der einzelnen Röntgenpulse mit Femtosekunden-Genauigkeit messen.

Bild: Jörg Harms/MPSD am CFEL

Mit einem elektromagnetischen Terahertz-Feld werden die Photoelektronen beschleunigt oder abgebremst – je nachdem, zu welchem Zeitpunkt sie emittiert wurden. Das wird mit Hilfe eines Flugzeit-Spektrographen aufgezeichnet. Sofern die genaue Form des Terahertz-Pulses bekannt ist, liefert die Kombination dieser Informationen das zeitliche Profil und die Ankunftszeit der individuellen Röntgenpulse mit einer Präzision von rund fünf Femtosekunden.

„Die gleichzeitige Messung der Ankunftszeit und des Pulsprofils, unabhängig von allen anderen FEL-Parametern, ist der Schlüssel zu dieser Technik“, erklärt Cavalieri, der Professor an der Universität Hamburg und Leiter der Max-Planck-Forschungsgruppe Strukturdynamik am CFEL ist. Bisher hat keine andere Technik diese vollständige Information über das Timing geliefert – genau diese Information ist jedoch entscheidend für die zukünftigen Anwendungsgebiete dieser einzigartigen Röntgenlichtquellen.

Die von der Forschergruppe veröffentlichten Messungen zur Puls-Charakterisierung stören die FEL-Blitze nicht – es gehen nur vernachlässigbar wenige Photonen bei der Erzeugung der Photoelektronen verloren. Daher kann die Technik im Prinzip in jedem Experiment bei nahezu jeder Wellenlänge angewendet werden, zum Beispiel auch bei dem gerade in Norddeutschland im Bau befindlichen European XFEL. Bei FLASH wird die Methode künftig zur Überwachung und Korrektur der FEL-Pulsdauer für eine Vielzahl von Untersuchungen im Atom- und Molekülkosmos zum Einsatz kommen. In weiteren Experimenten planen die Forscher, diese hochpräzisen Messungen als Rückkopplung einzusetzen, um Röntgenpulsprofile maßschneidern zu können.

Originalveröffentlichung
“Ultrafast X-ray pulse characterization at free-electron lasers”; Ivanka Grguraš et al.; “Nature Photonics”, 2012 (advance online publication); DOI: 10.1038/NPHOTON.2012.276

Wissenschaftliche Ansprechpartner
Prof. Dr. Adrian L. Cavalieri, MPSD am CFEL, +49 151 214 06545 (mobile), adrian.cavalieri@mpsd.cfel.de, Department-Fax: +49 40 8998 1958

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantencomputern das Lernen beibringen
24.02.2020 | Leibniz Universität Hannover

nachricht Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung
24.02.2020 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics