Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freie-Elektronen-Laser auf dem Weg zum Molekül-Kino

19.11.2012
Mit ultrakurzen Röntgenblitzen eröffnen Freie-Elektronen-Laser die Möglichkeit, chemische Reaktionen zu filmen und die Bewegung von Atomen zu beobachten.
Für diese Super-Zeitlupe müssen allerdings Ankunftszeit und zeitliches Profil der Röntgenblitze genau bekannt sein. Ein internationales Forscherteam hat jetzt ein Messverfahren entwickelt, um das zeitliche Profil einzelner Röntgenpulse von DESYs Freie-Elektronen-Laser FLASH mit Femtosekunden-Präzision zu messen. Diese Technik kann an jedem Freie-Elektronen Röntgenlaser der Welt eingesetzt werden. Das Forscherteam berichtet im Fachblatt „Nature Photonics“ über seine Ergebnisse.

Die extrem hellen und ultrakurzen Röntgenpulse aus Freie-Elektronen-Lasern (FEL) bieten einzigartige Forschungsmöglichkeiten. Billionen von Photonen sind in einem Blitz gebündelt – einem Puls von höchstens einigen Dutzend Femtosekunden Dauer. Allerdings können sich die genaue Ankunftszeit und sogar das zeitliche Profil der FEL-Pulse enorm von einem Puls zum nächsten verändern. Um den Röntgenlaser zum „Filmen“ ultraschneller dynamischer Prozesse zu nutzen, muss die Ankunftszeit jedes einzelnen Pulses gemessen werden. Nur so lassen sich die Einzelbilder, die mit jedem Blitz aufgenommen werden, korrekt zeitlich ordnen.
Mit Hilfe eines präzisen Timings sind Femtosekunden-FEL-Röntgenpulse so kurz, dass Atome in Bewegung, chemische Reaktionen und Phasenübergänge in Materialien mit atomarer Auflösung im Femtosekundenbereich beobachtet werden können. Die gleichzeitige Messung des Puls-Profils bietet darüber hinaus die Möglichkeit, selbst Veränderungen während der Belichtung einzelner Bilder zu verfolgen. Auf diesen Zeitskalen sind bereits die Bewegung der Elektronen und die Dynamik der Elektronenzustände von Bedeutung. Die Dynamik der Elektronen kann etwa Biomoleküle schädigen und unter Umständen zerstören, noch bevor ein kristallklares Bild aufgenommen werden konnte.

Für ihre Messungen haben die Wissenschaftler, die außer von DESY und CFEL auch von European XFEL, der Universität Hamburg und SLAC kommen, die in der Attosekundenphysik (eine Attosekunde ist eine tausendstel Femtosekunde) angewandte Methode des sogenannten Photoelektron-Streaking adaptiert. Damit lassen sich Profile zeitlich variierender Lichtsignale aufzeichnen. Dank der enormen Intensität der FEL-Blitze konnten die Forscher diese Messungen bei FLASH sogar von einzelnen Pulsen durchführen. Dafür wurden die Röntgenblitze auf dem Weg zu ihrem Ziel durch Neon-Gas geschossen. Jeder Puls erzeugt eine Salve von Photoelektronen, die aus dem Edelgas herausgeschlagen werden. Das zeitliche Profil dieser Photoelektronen entspricht demjenigen des Pulses.

Ein Terahertz-Feld beschleunigt Photoelektronen, die vom Freie-Elektronen-Röntgenlaser aus Neonatomen geschlagen wurden. Auf diese Weise lassen sich Profil und Ankunftszeit der einzelnen Röntgenpulse mit Femtosekunden-Genauigkeit messen.

Bild: Jörg Harms/MPSD am CFEL

Mit einem elektromagnetischen Terahertz-Feld werden die Photoelektronen beschleunigt oder abgebremst – je nachdem, zu welchem Zeitpunkt sie emittiert wurden. Das wird mit Hilfe eines Flugzeit-Spektrographen aufgezeichnet. Sofern die genaue Form des Terahertz-Pulses bekannt ist, liefert die Kombination dieser Informationen das zeitliche Profil und die Ankunftszeit der individuellen Röntgenpulse mit einer Präzision von rund fünf Femtosekunden.

„Die gleichzeitige Messung der Ankunftszeit und des Pulsprofils, unabhängig von allen anderen FEL-Parametern, ist der Schlüssel zu dieser Technik“, erklärt Cavalieri, der Professor an der Universität Hamburg und Leiter der Max-Planck-Forschungsgruppe Strukturdynamik am CFEL ist. Bisher hat keine andere Technik diese vollständige Information über das Timing geliefert – genau diese Information ist jedoch entscheidend für die zukünftigen Anwendungsgebiete dieser einzigartigen Röntgenlichtquellen.

Die von der Forschergruppe veröffentlichten Messungen zur Puls-Charakterisierung stören die FEL-Blitze nicht – es gehen nur vernachlässigbar wenige Photonen bei der Erzeugung der Photoelektronen verloren. Daher kann die Technik im Prinzip in jedem Experiment bei nahezu jeder Wellenlänge angewendet werden, zum Beispiel auch bei dem gerade in Norddeutschland im Bau befindlichen European XFEL. Bei FLASH wird die Methode künftig zur Überwachung und Korrektur der FEL-Pulsdauer für eine Vielzahl von Untersuchungen im Atom- und Molekülkosmos zum Einsatz kommen. In weiteren Experimenten planen die Forscher, diese hochpräzisen Messungen als Rückkopplung einzusetzen, um Röntgenpulsprofile maßschneidern zu können.

Originalveröffentlichung
“Ultrafast X-ray pulse characterization at free-electron lasers”; Ivanka Grguraš et al.; “Nature Photonics”, 2012 (advance online publication); DOI: 10.1038/NPHOTON.2012.276

Wissenschaftliche Ansprechpartner
Prof. Dr. Adrian L. Cavalieri, MPSD am CFEL, +49 151 214 06545 (mobile), adrian.cavalieri@mpsd.cfel.de, Department-Fax: +49 40 8998 1958

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics