Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsteam der Universität Hamburg beobachtet Auferstehung eines kosmischen (Radio-)Phönix

27.08.2015

In der Mythologie ist der Phönix ein Vogel, der aus seiner eigenen Asche wieder aufersteht. Eine ähnliche Wiedergeburt in Form von Radiowellen konnten Dr. Francesco de Gasperin und Prof. Dr. Marcus Brüggen von der Universität Hamburg nun beobachten. Gemeinsam mit internationalen Wissenschaftlerinnen und Wissenschaftlern verfolgten sie, wie zwei entfernte Galaxienhaufen miteinander kollidierten. Die neuen Erkenntnisse wurden in der Fachzeitschrift „Monthly Notices of the Royal Astronomical Society“ veröffentlicht.

Dieser sogenannte „Radio-Phönix“ wurde im Abell 1033 entdeckt – einem Galaxienhaufen, der 1,6 Milliarden Lichtjahre von der Erde entfernt ist. Galaxienhaufen sind Ansammlungen von bis zu tausend einzelnen Galaxien und damit die größten Gebilde im Universum, die durch Schwerkraft zusammengehalten werden. Sie bestehen vor allem aus Dunkler Materie und extrem heißem Gas, das durch Röntgenlicht sichtbar wird.


Montagebild: Der Radio-Phönix ist die horizontal langgestreckte Radioquelle.

Image credit: X-ray: NASA/CXC/Univ of Hamburg/F. de Gasperin et al; Optical: SDSS; Radio: NRAO/VLA/Univ of Hamburg/F. de Gasperin et al

Die Astronominnen und Astronomen konnten durch die Montage mehrerer Bilder des Abell 1033 ein neues Portrait des Radio-Phönix aufnehmen und seinen wissenschaftlichen Hintergrund rekonstruieren.

Geliefert wurden die Bilder von dem Westerbork Synthesis-Radioteleskop (WSRT) in den Niederlanden, dem Röntgenteleskop Chandra X-ray Observatory der NASA, dem Karl G. Jansky Very Large Array (VLA) der National Science Foundation (NSF) und dem Sloan Digital Sky Survey (SDSS).

Gemäß der Studie hat sich in der Vergangenheit nahe dem Zentrum von Abell 1033 ein supermassives Schwarzes Loch entladen. Dabei wurden die Elementarteilchen des Schwarzen Loches auf extreme Energien beschleunigt.

Diese Teilchen strahlten zunächst leuchtend helle Radiowellen ab und verblassten dann allmählich wieder. Zu dem Radio-Phönix kam es durch den Einschlag eines weiteren Galaxienhaufens in Abell 1033. Aufgrund der Kollision und die dadurch erzeugten Stoßwellen wurden die ruhenden Teilchen zusammengepresst und mit Energie aufgeladen, sodass sie erneut Radiowellen aussendeten und wieder zum Strahlen angeregt werden konnten.

Da ein Radio-Phönix wegen der hohen Dichte, des Drucks und der Magnetfelder in der Nähe des Zentrums eines Galaxienhaufens nur einige zig Millionen Jahre überdauern könnte, also verhältnismäßig wenig Zeit für Entwicklungen im Kosmos, gehen die Forscherinnen und Forscher davon aus, dass ihre Aufnahmen den Radio-Phönix kurz nach seiner Wiedergeburt zeigen.

Die Daten des internationalen Forschungsteams liefern wichtige Erkenntnisse über die Entstehung der verschiedenen Strukturen im Universum und verdeutlichen, wie Elementarteilchen im Kosmos beschleunigt werden.

Links zum Artikel:

http://arxiv.org/abs/1501.00043 oder

http://mnras.oxfordjournals.org/content/448/3/2197.full.pdf

Link zur Pressemitteilung der NASA:

http://chandra.harvard.edu/photo/2015/a1033

Für Rückfragen:

Dr. Francesco de Gasperin (nur in Englisch)
Universität Hamburg
Hamburger Sternwarte
Tel.: 040 42838-8599
E-Mail: fdg@hs.uni-hamburg.de

Prof. Dr. Marcus Brüggen
Universität Hamburg
Hamburger Sternwarte
Tel.: 040 42838-8537
E-Mail: mbrueggen@hs.uni-hamburg.de

Birgit Kruse | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick auf die Erde vor der Sonne
19.06.2019 | Georg-August-Universität Göttingen

nachricht Zwei erdähnliche Planeten um einen der kleinsten Sterne – und die Möglichkeit, von dort aus die Erde nachzuweisen
18.06.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

19.06.2019 | Messenachrichten

Blick auf die Erde vor der Sonne

19.06.2019 | Physik Astronomie

Zellteilung auf Hochtouren

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics