Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste experimentelle Quantensimulation eines Phänomens der Teilchenphysik

23.06.2016

Mit der ersten Quantensimulation einer Gitter-Eichfeldtheorie schlagen Innsbrucker Physiker eine Brücke zwischen Hochenergiephysik und Atomphysik. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie mit einem Quantencomputer die spontane Entstehung von Elementarteilchen-Paaren aus einem Vakuum simuliert haben.

Die kleinsten bekannten Bausteine der Materie sind die Elementarteilchen, deren Eigenschaften die Teilchenphysik mit dem sogenannten Standardmodell beschreibt. Spätestens seit dem Nachweis des Higgs-Teilchens 2012 am europäischen Kernforschungszentrum CERN gilt das Modell als weitgehend bestätigt.


Physiker haben mit einem Quantencomputer die spontane Entstehung von Elementarteilchen-Paaren aus einem Vakuum simuliert.

IQOQI/Harald Ritsch

Allerdings sind viele Aspekte dieser Theorie noch nicht verstanden und können aufgrund ihrer Komplexität auf klassischen Computern auch nicht zufriedenstellend untersucht werden. Quantensimulatoren könnten hier in Zukunft Abhilfe schaffen, indem sie einzelne Aspekte der Elementarteilchenphysik in einem Quantensystem nachbilden.

Einen Schritt in diese Richtung haben nun Physiker der Universität Innsbruck und des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften gesetzt. Die Forschungsgruppen um Rainer Blatt und Peter Zoller haben zum weltweit ersten Mal eine Gitter-Eichfeldtheorie in einem Quantensystem simuliert und berichten darüber in der Fachzeitschrift Nature.

Paarbildung auf einem Quantencomputer simuliert

Eichtheorien beschreiben die Wechselwirkung zwischen elementaren Teilchen, wie zum Beispiel Quarks und Gluonen, und sind die Basis für unser Verständnis von fundamentalen Prozessen. „Äußerst schwer zu behandeln sind dynamische Prozesse wie die Kollision von Elementarteilchen oder die spontane Entstehung von Teilchen-Antiteilchen-Paaren“, erklärt IQOQI-Theoretikerin Christine Muschik.

„Hier stoßen numerische Berechnungen auf klassischen Computern extrem rasch an ihre Grenzen. Aus diesem Grund wurde vorgeschlagen, solche Prozesse mit einem kontrollierten Quantensystem zu simulieren.“ In den vergangenen Jahren entstanden viele interessante Vorschläge, die bisher aber nicht realisiert werden konnten. „Ein von uns neu entwickeltes Konzept ermöglicht es nun, die spontane Entstehung von Elektron-Positron-Paaren aus dem Vakuum auf einem Quantencomputer zu simulieren“, sagt Muschik.

Das Quantensystem besteht aus vier elektromagnetisch gefangenen Kalzium-Ionen, die durch Laserpulse kontrolliert werden. „Je zwei Ionen repräsentieren ein Paar aus Teilchen und Antiteilchen“, erklärt der Experimentalphysiker Esteban A. Martinez aus dem Team um Rainer Blatt.

„Mit Laserpulsen simulieren wir zunächst ein elektromagnetisches Feld in einem Vakuum. Dann können wir beobachten, wie aus der Energie dieses Feldes aufgrund von Quantenfluktuationen Teilchenpaare entstehen. Ob Teilchen oder Antiteilchen erzeugt werden, weisen wir mit Hilfe der Fluoreszenz der Ionen nach. Verändern wir die Parameter des Quantensystems, können wir den dynamischen Prozess der Paarbildung mitverfolgen und studieren.“

Gemeinsam zu neuen Erkenntnissen

Mit dem Experiment schlagen die Innsbrucker Physiker eine Brücke zwischen zwei Teilgebieten der Physik: Hier werden Probleme der Hochenergiephysik mit Methoden aus der Atomphysik studiert. Während im einen Feld Hunderte von Theoretiker an den äußerst komplexen Theorien zum Standardmodell arbeiten und Experimente an milliardenteuren Teilchenbeschleunigern wie am CERN durchgeführt werden, können Quantensimulationen bereits von kleinen Gruppen in Laborexperimenten umgesetzt werden. „Diese beiden Zugänge ergänzen sich perfekt“, betont der Theoretiker Peter Zoller. „Wir können die Experimente in Teilchenbeschleunigern nicht ersetzen.

Mit der Entwicklung von Quantensimulatoren lassen sich diese Experimente aber möglicherweise einmal besser verstehen.“ Experimentalphysiker Rainer Blatt ergänzt: „Darüber hinaus lassen sich in Quantensimulationen auch neue Prozesse studieren. So haben wir in unserem Experiment die bei der Paarerzeugung entstehende Verschränkung untersucht, was in einem Teilchenbeschleuniger nicht möglich wäre.“ Die Physiker sind überzeugt, dass zukünftige Quantensimulatoren das Potential haben werden, wichtige Probleme der Hochenergiephysik, die mit klassischen Methoden nicht mehr behandelbar sind, zu lösen.

Grundstein für neues Forschungsfeld

Die Idee für die Verbindung der beiden Felder wurde erst vor einigen Jahren konkretisiert und nun erstmals auch experimentell umgesetzt. „Konzeptuell unterscheidet sich dieser Ansatz wesentlich von den bisherigen Quantensimulationen von Problemen der Festkörperphysik oder der Quantenchemie. Aufgrund der theoretischen Komplexität muss die Simulation von Elementarteilchenprozessen ganz besondere Erfordernisse erfüllen. Entsprechend schwierig ist es, ein taugliches Protokoll dafür zu entwickeln“, betont Peter Zoller.

Aber auch die Experimentatoren waren entsprechend gefordert: „Dies ist eines der komplexesten Experimente, das bisher in einem Ionenfallen-Quantencomputer durchgeführt wurde“, erzählt Rainer Blatt. „Wir lernen gerade erst, wie diese Quantensimulationen funktionieren und werden sie dann nach und nach auch auf größere Fragestellungen anwenden können.“ Entscheidend für diesen Durchbruch war das enorme Know-how der Innsbrucker Physiker sowohl im theoretischen als auch im experimentellen Bereich. „Wir forschen seit Jahren sehr erfolgreich am Quantencomputer und haben viel Erfahrung in der Umsetzung gewonnen“, betonen Rainer Blatt und Peter Zoller. In der Quantenmetropole Innsbruck arbeiten Theorie und Experiment auf höchstem Niveau zusammen und können so gemeinsam in Wissensbereiche vordringen, die zuvor noch niemand betreten hat.

Finanziell gefördert wurden die Wissenschaftler der Universität Innsbruck und des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften unter anderem vom österreichischen Wissenschaftsfonds FWF, der Deutschen Akademie der Naturforscher Leopoldina, der Europäischen Union und der Tiroler Industrie.

Publikation: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Esteban A. Martinez, Christine Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt. Nature 2016
DOI: 10.1038/nature18318

Kontakt:
Esteban A. Martinez
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-52456
E-Mail: esteban.martinez@uibk.ac.at

Christine Muschik
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507-4790
E-Mail: christine.muschik@oeaw.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://iqoqi.at - Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften
http://www.quantumoptics.at - Arbeitsgruppe Quantenoptik und Spektroskopie
http://www.uibk.ac.at/th-physik/qo/ - Arbeitsgruppe Quantenoptik

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics