Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste experimentelle Quantensimulation eines Phänomens der Teilchenphysik

23.06.2016

Mit der ersten Quantensimulation einer Gitter-Eichfeldtheorie schlagen Innsbrucker Physiker eine Brücke zwischen Hochenergiephysik und Atomphysik. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie mit einem Quantencomputer die spontane Entstehung von Elementarteilchen-Paaren aus einem Vakuum simuliert haben.

Die kleinsten bekannten Bausteine der Materie sind die Elementarteilchen, deren Eigenschaften die Teilchenphysik mit dem sogenannten Standardmodell beschreibt. Spätestens seit dem Nachweis des Higgs-Teilchens 2012 am europäischen Kernforschungszentrum CERN gilt das Modell als weitgehend bestätigt.


Physiker haben mit einem Quantencomputer die spontane Entstehung von Elementarteilchen-Paaren aus einem Vakuum simuliert.

IQOQI/Harald Ritsch

Allerdings sind viele Aspekte dieser Theorie noch nicht verstanden und können aufgrund ihrer Komplexität auf klassischen Computern auch nicht zufriedenstellend untersucht werden. Quantensimulatoren könnten hier in Zukunft Abhilfe schaffen, indem sie einzelne Aspekte der Elementarteilchenphysik in einem Quantensystem nachbilden.

Einen Schritt in diese Richtung haben nun Physiker der Universität Innsbruck und des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften gesetzt. Die Forschungsgruppen um Rainer Blatt und Peter Zoller haben zum weltweit ersten Mal eine Gitter-Eichfeldtheorie in einem Quantensystem simuliert und berichten darüber in der Fachzeitschrift Nature.

Paarbildung auf einem Quantencomputer simuliert

Eichtheorien beschreiben die Wechselwirkung zwischen elementaren Teilchen, wie zum Beispiel Quarks und Gluonen, und sind die Basis für unser Verständnis von fundamentalen Prozessen. „Äußerst schwer zu behandeln sind dynamische Prozesse wie die Kollision von Elementarteilchen oder die spontane Entstehung von Teilchen-Antiteilchen-Paaren“, erklärt IQOQI-Theoretikerin Christine Muschik.

„Hier stoßen numerische Berechnungen auf klassischen Computern extrem rasch an ihre Grenzen. Aus diesem Grund wurde vorgeschlagen, solche Prozesse mit einem kontrollierten Quantensystem zu simulieren.“ In den vergangenen Jahren entstanden viele interessante Vorschläge, die bisher aber nicht realisiert werden konnten. „Ein von uns neu entwickeltes Konzept ermöglicht es nun, die spontane Entstehung von Elektron-Positron-Paaren aus dem Vakuum auf einem Quantencomputer zu simulieren“, sagt Muschik.

Das Quantensystem besteht aus vier elektromagnetisch gefangenen Kalzium-Ionen, die durch Laserpulse kontrolliert werden. „Je zwei Ionen repräsentieren ein Paar aus Teilchen und Antiteilchen“, erklärt der Experimentalphysiker Esteban A. Martinez aus dem Team um Rainer Blatt.

„Mit Laserpulsen simulieren wir zunächst ein elektromagnetisches Feld in einem Vakuum. Dann können wir beobachten, wie aus der Energie dieses Feldes aufgrund von Quantenfluktuationen Teilchenpaare entstehen. Ob Teilchen oder Antiteilchen erzeugt werden, weisen wir mit Hilfe der Fluoreszenz der Ionen nach. Verändern wir die Parameter des Quantensystems, können wir den dynamischen Prozess der Paarbildung mitverfolgen und studieren.“

Gemeinsam zu neuen Erkenntnissen

Mit dem Experiment schlagen die Innsbrucker Physiker eine Brücke zwischen zwei Teilgebieten der Physik: Hier werden Probleme der Hochenergiephysik mit Methoden aus der Atomphysik studiert. Während im einen Feld Hunderte von Theoretiker an den äußerst komplexen Theorien zum Standardmodell arbeiten und Experimente an milliardenteuren Teilchenbeschleunigern wie am CERN durchgeführt werden, können Quantensimulationen bereits von kleinen Gruppen in Laborexperimenten umgesetzt werden. „Diese beiden Zugänge ergänzen sich perfekt“, betont der Theoretiker Peter Zoller. „Wir können die Experimente in Teilchenbeschleunigern nicht ersetzen.

Mit der Entwicklung von Quantensimulatoren lassen sich diese Experimente aber möglicherweise einmal besser verstehen.“ Experimentalphysiker Rainer Blatt ergänzt: „Darüber hinaus lassen sich in Quantensimulationen auch neue Prozesse studieren. So haben wir in unserem Experiment die bei der Paarerzeugung entstehende Verschränkung untersucht, was in einem Teilchenbeschleuniger nicht möglich wäre.“ Die Physiker sind überzeugt, dass zukünftige Quantensimulatoren das Potential haben werden, wichtige Probleme der Hochenergiephysik, die mit klassischen Methoden nicht mehr behandelbar sind, zu lösen.

Grundstein für neues Forschungsfeld

Die Idee für die Verbindung der beiden Felder wurde erst vor einigen Jahren konkretisiert und nun erstmals auch experimentell umgesetzt. „Konzeptuell unterscheidet sich dieser Ansatz wesentlich von den bisherigen Quantensimulationen von Problemen der Festkörperphysik oder der Quantenchemie. Aufgrund der theoretischen Komplexität muss die Simulation von Elementarteilchenprozessen ganz besondere Erfordernisse erfüllen. Entsprechend schwierig ist es, ein taugliches Protokoll dafür zu entwickeln“, betont Peter Zoller.

Aber auch die Experimentatoren waren entsprechend gefordert: „Dies ist eines der komplexesten Experimente, das bisher in einem Ionenfallen-Quantencomputer durchgeführt wurde“, erzählt Rainer Blatt. „Wir lernen gerade erst, wie diese Quantensimulationen funktionieren und werden sie dann nach und nach auch auf größere Fragestellungen anwenden können.“ Entscheidend für diesen Durchbruch war das enorme Know-how der Innsbrucker Physiker sowohl im theoretischen als auch im experimentellen Bereich. „Wir forschen seit Jahren sehr erfolgreich am Quantencomputer und haben viel Erfahrung in der Umsetzung gewonnen“, betonen Rainer Blatt und Peter Zoller. In der Quantenmetropole Innsbruck arbeiten Theorie und Experiment auf höchstem Niveau zusammen und können so gemeinsam in Wissensbereiche vordringen, die zuvor noch niemand betreten hat.

Finanziell gefördert wurden die Wissenschaftler der Universität Innsbruck und des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften unter anderem vom österreichischen Wissenschaftsfonds FWF, der Deutschen Akademie der Naturforscher Leopoldina, der Europäischen Union und der Tiroler Industrie.

Publikation: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Esteban A. Martinez, Christine Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, and Rainer Blatt. Nature 2016
DOI: 10.1038/nature18318

Kontakt:
Esteban A. Martinez
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507-52456
E-Mail: esteban.martinez@uibk.ac.at

Christine Muschik
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Tel.: +43 512 507-4790
E-Mail: christine.muschik@oeaw.ac.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at

Weitere Informationen:

http://iqoqi.at - Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften
http://www.quantumoptics.at - Arbeitsgruppe Quantenoptik und Spektroskopie
http://www.uibk.ac.at/th-physik/qo/ - Arbeitsgruppe Quantenoptik

Dr. Christian Flatz | Universität Innsbruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Direkte Abbildung von Riesenmolekülen
24.05.2019 | Max-Planck-Institut für Quantenoptik

nachricht MiLiQuant: Quantentechnologie nutzbar machen
23.05.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics