Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfach über die Distanz verschränkt

19.03.2013
Mit Hilfe eines einzelnen Lichtteilchens haben Innsbrucker Physiker um Lukas Slodièka und Markus Hennrich erstmals zwei räumlich von einander getrennte Atome verschränkt. Diese Art der Verschränkung von Quantenobjekten ist wesentlich effizienter als bisherige Verfahren und könnte in Zukunft in großen Quantennetzwerken eingesetzt werden.

Das Team vom Institut für Experimentalphysik der Universität Innsbruck setzt erstmals einen Vorschlag von Theoretikern um Carlos Cabrillo und Peter Zoller aus dem Jahr 1999 um. Dabei werden zwei räumlich von einander getrennte Atome durch die Emission und Messung eines einzelnen Photons (Lichtteilchens) miteinander verschränkt.


Vom ersten Atom emittierte Photonen werden direkt in einen Lichtwellenleiter geleitet. Photonen des zweiten Atoms werden über einen entfernt liegenden Spiegel in den gleichen Lichtwellenleiter geleitet.
Grafik: Lukas Slodièka

Die zwei Barium-Atome werden in einer Ionenfalle gefangen, mit Hilfe von Lasern stark abgekühlt und angeregt. Wie die Physiker die räumliche Distanz zwischen den beiden in der Ionenfalle direkt nebeneinander liegenden Atomen simulieren, erklärt Doktorand Lukas Slodièka: „Vom ersten Atom emittierte Photonen werden direkt in einen Lichtwellenleiter geleitet. Photonen des zweiten Atoms leiten wir über einen entfernt liegenden Spiegel in den gleichen Lichtwellenleiter und stellen so virtuell eine Distanz von einem Meter zwischen den Quantenteilchen her.“ Gleichzeitig garantiert dieser Ansatz ein wesentliches Merkmal dieses neuen Experiments: „Kann der Detektor am Ende des Lichtwellenleiters nicht mehr unterscheiden von welchem Atom das ausgesandte Photon stammt, dann sind die Quantenzustände der beiden Atome miteinander verschränkt“, sagt Slodièka.

Hohe Genauigkeit und Effizienz

Die Experimentalphysiker aus dem Team von Rainer Blatt müssen dabei nanometergenau arbeiten, um stabile Messungen zu gewährleisten. „Wenn diese Bedingung erfüllt ist, erreichen wir mit diesem experimentellen Ansatz eine sehr hohe Verschränkungsrate“, sagt Markus Hennrich. In bisherigen Experimenten wurde mit zwei Atomen gearbeitet, die je ein Photon zu den Detektoren senden müssen. „Bis zur Detektion von zwei Photonen muss ungefähr eine Million mal gemessen werden“, erzählt der gebürtige Slowake Lukas Slodièka, der seit 2008 in Innsbruck forscht. „Bei der neuen Methode genügt es ein einzelnes Lichtteilchen zu detektieren, so dass wir ein etwa alle 1000 Messungen ein einen verschränkten Zustand der beiden Atome erzeugen.“ Das ist ein enormer Fortschritt und für die praktische Nutzung von großer Bedeutung.

Vielfältig einsetzbar

„Wir können also die inneren Zustände zweier Atome über ein einzelnes Photon gezielt und mit hoher Effizienz verschränken“, sagt Markus Hennrich. „Gleichzeitig lassen sich mit den einzelnen Atomen auch Quantenoperationen durchführen.“ Das eröffnet den Weg für Anwendungen in großen Quantennetzwerken. „So könnten zum Beispiel zwei Quantencomputer auf diese Weise über Lichtwellenleiter miteinander verbunden werden“, schlägt Slodièka vor. Denn miteinander verschränkte Quantenobjekte verfügen immer über die gleichen physikalischen Eigenschaften. Darauf basieren viele Vorschläge für zukünftige Quantentechnologien, zum Beispiel für die Kommunikation, Kryptografie oder die Informationsverarbeitung.

Diese Ergebnisse wurden vor kurzem im Fachjournal Physical Review Letters veröffentlicht und unter anderem vom österreichischen Wissenschaftsfonds FWF, der EU und der Tiroler Industrie unterstützt.

Publikation: Atom-Atom Entanglement by Single-Photon Detection. L. Slodièka, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt. Phys. Rev. Lett. 110, 083603 (2013)

DOI: 10.1103/PhysRevLett.110.083603 (http://dx.doi.org/10.1103/PhysRevLett.110.083603)

Rückfragehinweis:
Lukas Slodièka
Institut für Experimentalphysik
Universität Innsbruck
Tel.: +43 512 507- 52472
E-Mail: lukas.slodicka@uibk.ac.at
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507-32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics