Eine Störstelle mit großer Anziehungskraft

Anschauliche Darstellung des Einfangprozesses: Eine atomare Störstelle mit zwei Energieniveaus befindet sich an einer bestimmten Stelle in einer periodischen Struktur. Weil die atomare Anregungsfrequenz in die Energielücke des Materials passt, werden die Lichtquanten, die nach der Anregung vom Atom ausgesandt werden, innerhalb der Struktur gefangen. Grafik: MPQ, Abteilung Theorie

Niemand ist vollkommen, doch manchmal ist es gerade der Fehler, auf den es ankommt. So ändern sich z.B. die Eigenschaften von Halbleitern bereits drastisch bei den geringsten Änderungen der Dotierungskonzentrationen.

Und während der perfekte Diamant völlig klar ist, lassen ihn atomare Verunreinigungen hellblau, rosa oder lila schimmern, wodurch sich sein Wert unter Umständen noch erhöht. Alle diese Effekte beruhen auf Prozessen, die durch das Wechselspiel der Störstelle mit dem Quanten-Vielteilchensystem, in dem es eingebettet ist, ausgelöst werden.

Ein Team von Physikern aus der Abteilung Theorie von Prof. Ignacio Cirac am Max-Planck-Institut für Quantenoptik in Garching hat jetzt den allgemeineren Fall untersucht, bei dem ein Störstellenatom an ein periodisch strukturiertes „Bad“ von Bosonen koppelt (z.B. Lichtquanten in einem photonischen Kristall) und fanden dabei heraus, wie schon ein einziges Atom eine Wolke aus vielen Bosonen an sich binden kann.

Gebundene Zustände von Bosonen sind von besonderem Interesse, weil sie zu starken Wechselwirkungen mit großer Reichweite führen und so neue Bereiche für Quantensimulationen erschließen. (Phys. Rev. X 6, 021027 (2016), 25. Mai 2016).

Eine Reihe von Modellen in der Quantenoptik und der Physik der kondensierten Materie beziehen sich im Kern auf die Wechselwirkung von Spin-Störungen mit Ansammlungen von Bosonen, die zu einer Vielfalt von Phänomenen führt.

Für den Fall von Atomen, die an photonische Kristalle gekoppelt sind (das sind dielektrische Stoffe mit periodischen Schwankungen des Brechungsindex) sagen die Modelle z.B. vorher, dass ein einzelnes Atom ein einzelnes Photon lokalisiert an sich binden kann, wenn die atomare Anregungsfrequenz innerhalb der photonischen Bandlücke des Materials liegt.

Vor dem Hintergrund der jüngsten Fortschritte in der technischen Verbindung atomarer Systeme mit photonischen Kristallstrukturen erfahren solche gebundenen Atom-Photon-Zustände wieder großes Interesse, vor allem in Bezug auf Quantensimulationen, da sie erwartungsgemäß starke und weitreichende Wechselwirkungen zwischen den Atomen vermitteln.

In ihrer jetzt veröffentlichten Arbeit untersuchen Tao Shi, Ying-Hai Wu and Alejandro González-Tudela aus der Abteilung Theorie von Prof. Cirac das allgemeine Problem einer einzelnen Spin-Störung, die an ein „Bad“ von Bosonen koppelt. Dabei zeigen sie, dass ein einzelnes Atom tatsächlich nicht nur ein einzelnes Boson, sondern sogar unbegrenzt viele Bosonen räumlich an sich binden kann. Vereinfacht ausgedrückt, erzeugt die Kopplung der Störstelle an das bosonische Bad ein effektives Potential, das die Bosonen gewissermaßen einsperrt.

Das gilt vor allem, wenn sich das Atom in einem photonischen Kristall befindet, wo es eine Wolke von vielen Photonen an sich binden kann. Darüber hinaus liefern die Autoren einen Ansatz, mit dem sie das Verhalten der gebundenen Zustände im gesamten Parameterraum beschreiben können. Dabei decken sie die Existenz vieler verschiedener Bereiche auf, in denen die physikalischen Eigenschaften, wie etwa die Energie oder die Größe der gebundenen Zustände, unterschiedlich skalieren.

Da das Modell sehr allgemein ist, können diese gebundenen Zustände möglicherweise mit unterschiedlichen experimentellen Plattformen präpariert und beobachtet werden, angefangen bei Atomen, die an photonische Kristalle gekoppelt sind, über Schaltkreis-Quantenelektrodynamik bis zu kalten Atomen in zustandsabhängigen optischen Gittern. Die Existenz dieser gebundenen bosonischen Zustände erweitert die Möglichkeiten dieser Plattformen, neue exotische Vielteilchen-Phänomene zu simulieren. [AGT/OM]

Originalveröffentlichung:

Tao Shi, Ying-Hai Wu, A. González-Tudela, and J. I. Cirac
Bound states in boson impurity models
Phys. Rev. X 6, 021027 (2016), 25 May 2016

Kontakt:

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -705 /-736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Alejandro González-Tudela
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -127
E-Mail: alejandro.gonzalez-tudela@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Media Contact

Dr. Olivia Meyer-Streng Max-Planck-Institut für Quantenoptik

Weitere Informationen:

http://www.mpq.mpg.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer