Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Quantenpumpe für ultrakalte Atome

17.12.2015

Münchner Wissenschaftler realisieren dynamische Version des Quanten-Hall-Effekts in optischen Übergittern

Der Transport von Teilchen wird in der Regel durch einen von außen an das System angelegten Gradienten hervorgerufen, wie beispielsweise beim Fließen von Wasser auf einem Gefälle oder eines elektrischen Stroms durch das Anlegen einer Spannung.


Schraube des Archimedes. Durch kontinuierliche Rotation der Schraube wird Wasser vom unteren in das obere Reservoir gepumpt.


Realisierung einer topologischen Ladungspumpe in einem optischen Übergitter. (a) Durch Überlagerung zweier Stehwellen mit unterschiedlicher Periode wird ein optisches Übergitter erzeugt, dessen Form durch Verschieben des langen Gitters (grün) verändert werden kann. Dadurch wird eine Bewegung der Atome im Gitter hervorgerufen, bei der diese durch die Barrieren zwischen benachbarten Gitterplätzen hindurchtunneln. (b) Gemessene Position der Atomwolke während eines Pumpzyklus, in dem sich die Atome um genau eine Periode des langen Gitters dl bewegen.

Bereits in der Antike war allerdings bekannt, dass es eine weitere Möglichkeit gibt, eine gerichtete Bewegung zu erzeugen, nämlich durch periodische Modulation eines Systems wie bei der berühmten Schraube des Archimedes.

Vor mehr als 30 Jahren sagte der schottische Physiker David Thouless voher, dass ein ähnliches Phänomen auch in quantenmechanischen System auftreten sollte, das sogenannte topoplogische Pumpen.

Einer Gruppe von Wissenschaftlern der Ludwig-Maximilians-Universität München und des Max-Planck-Instituts für Quantenoptik unter der Leitung von Professor Immanuel Bloch ist es nun in Zusammenarbeit mit dem theoretischen Physiker Oded Zilberberg (ETH Zürich) erstmals gelungen, eine solche topologische Ladungspumpe mit ultrakalten Atomen in einem optischen Gitter zu implementieren.

Inspiriert durch den kurz zuvor entdeckten zweidimensionalen Quanten-Hall-Effekt, für den Klaus von Klitzing 1985 der Nobelpreis für Physik verliehen wurde, kam Thouless 1983 auf die Idee, dass ein ähnliches Phänomen auch in eindimensionalen Systemen zu beobachten sein sollte, wenn deren Parameter periodisch verändert werden.

Diese dynamische Version des Quanten-Hall-Effekts ermöglicht es, Teilchen ohne einen externen Gradienten zu transportieren. Aufgrund seiner speziellen, sogenannten topologischen Eigenschaften erfolgt ein solcher Transport zum einen in einer quantisierten Art und Weise, so dass die Teilchen sich pro Periode genau um eine definierte Strecke bewegen; zum anderen ist er äußerst robust gegenüber externen Störungen und wird nicht durch kleine Änderungen des Systems beeinflusst.

Dies ist insbesondere aus technischer Sicht interessant, da es eine genauere Definition des Standards für elektrischen Strom ermöglichen könnte. Trotz jahrelanger Bemühungen war es bis heute allerdings nicht möglich, eine solche quantisierte Ladungspumpe zu realisieren.

Ultrakalte Atome in optischen Gittern bilden hierfür ein geradezu ideales Modelsystem, da sie sich sehr gut kontrollieren und abbilden lassen. Die Atome können im Vakuum bis nahe an den absoluten Temperaturnullpunkt abgekühlt und anschließend in einem periodischen Potential eingefangen werden, das durch Interferenz mehrerer Laserstrahlen erzeugt wird.

Eine besondere Form solcher optischer Gitter stellen Übergitter dar, die durch Überlagerung zweier stehender Lichtwellen mit unterschiedlichen Periodizitäten erzeugt werden. In den Münchner Experimenten wurden die Perioden der Gitter so gewählt, dass sie sich gerade um einen Faktor zwei unterscheiden, wodurch Doppeltopfpotentiale entstehen wie in Abb. 2 dargestellt.

Mit Hilfe eines solchen Übergitters ist es möglich, die Idee von Thouless umzusetzen und Atome durch das Gitter zu transportieren. Hierzu werden die beiden Stehwellen relativ zueinander bewegt, indem das Gitter mit der größeren Periode in eine Richtung verschoben wird.

Dies führt dazu, dass sowohl die Tiefe der Gitterplätze als auch die Höhe der Barrieren zwischen ihnen periodisch moduliert werden. Ein klassisches Teilchen würde sich hierdurch nicht bewegen, da die Position der einzelnen Gitterplätze sich nicht ändert und es sich daher nur auf und ab bewegt. Im Gegensatz dazu kann ein Atom, dessen Bewegung bei so niedrigen Temperaturen durch eine quantenmechanische Welle beschrieben wird, dem sich bewegenden Gitter folgen, indem es durch die Barriere zwischen benachbarten Gitterplätzen hindurchtunnelt.

Thouless konnte bereits zeigen, dass die Bewegung der Atome in bestimmten Situationen nur quantisiert erfolgen kann, so dass sich ihre Position um ein ganzzahliges Vielfaches der Periode des sich bewegenden Gitters ändert. Dies ist beispielsweise der Fall, wenn die Atome anfänglich in einzelnen Doppeltöpfen lokalisiert sind. Eine solche Situation konnten die Münchner Forscher in ihren Experimenten realisieren, indem sie sich die abstoßende Wechselwirkung zwischen den Atomen zunutze machten, die dazu führt, dass sich in jedem Doppeltopf genau ein Atom befinden kann.

Obwohl ein solcher Zustand eigentlich isolierend ist, die Atome sich also nicht bewegen können, ist es möglich sie durch die oben beschriebene Modulation durch das Gitter zu transportieren. Durch Beobachtung der Atome mittels eines Mikroskops konnten die Wissenschaftler zum ersten Mal zeigen, dass die Bewegung der Atome pro Pumpzyklus tatsächlich quantisiert ist und aufgrund des Tunnelns der Atome in diskreten Schritten erfolgt.

Zusätzlich konnten sie zeigen, dass diese Bewegung unabhängig von der genauen Implementierung des Pump-Zyklus ist, wie zum Beispiel von der Tiefe der verwendeten Potentiale. Dies ist auf den topologischen Charakter des Transports zurückzuführen, wodurch er besonders unempfindlich gegenüber äußeren Störungen wird. In einer weiteren Reihe von Experimenten wurde das Verhalten der Atome in angeregten Zuständen innerhalb des Gitters untersucht.

Hierbei konnten die Forscher ein bemerkenswertes Phänomen beobachten, nämlich dass die Atome in bestimmten Zuständen anfingen, sich entgegengesetzt zur Bewegungsrichtung des Gitters zu bewegen. „Dieses Verhalten unterstreicht eindrucksvoll den quantenmechanischen Ursprung dieses Transportprozesses, da so etwas in einem klassischen System undenkbar wäre“, so Michael Lohse, ein an den Münchner Experimenten beteiligter Doktorand.

Diese Messungen zeigen auf sehr anschauliche Weise die Bedeutung topologischer Eigenschaften für das Verhalten physikalischer Systeme und ebnen den Weg für eine Vielzahl weiterer Experimente. Eine solche Pumpe kann nicht nur für den Transport von Teilchen verwendet werden, sondern könnte zum Beispiel so modifiziert werden, dass sie ausschließlich den so genannten Spin, also den Eigendrehimpuls der Atome, transportiert, während sich die Atome selbst nicht fortbewegen. Zudem wäre es möglich, durch Erweiterung des Pumpschemas auf zwei Richtungen Effekte zu untersuchen, wie sie eigentlich nur in vierdimensionalen Systemen auftreten können. [M.L./C.S.]


Originalveröffentlichung:
Michael Lohse, Christian Schweizer, Oded Zilberberg, Monika Aidelsburger and Immanuel Bloch
A Thouless Quantum Pump with Ultracold Bosonic Atoms in an Optical Superlattice
Nature Physics, DOI 10.1038/nphys3584, advance online publication, 14 December 2015

Kontakt:

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Michael Lohse
LMU München
Telefon: +49 (0)89 / 21 80 -6133
E-Mail: michael.lohse@physik.uni-muenchen.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein ultraschnelles Mikroskop für die Quantenwelt
24.01.2020 | Max-Planck-Institut für Festkörperforschung

nachricht Solar Orbiter: Generalprobe für das Doppelteleskop PHI
22.01.2020 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein ultraschnelles Mikroskop für die Quantenwelt

24.01.2020 | Physik Astronomie

Science Publikation: Biologen enträtseln inneren Dialog von Samen

24.01.2020 | Biowissenschaften Chemie

Magenkrebs im Visier - Neuer Ansatz für eine selektive Chemotherapie

24.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics