Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Stoffe, die Wolken heller machen

28.10.2016

Wolken bestehen aus winzigen Tröpfchen. Diese Tröpfchen bilden sich, wenn das Wasser an sogenannten Aerosolen kondensiert – an kleinen Partikeln in der Atmosphäre. Um besser zu verstehen, wie wiederum Aerosole entstehen, haben Forschende nun eine umfassende Computersimulation auf der Grundlage detaillierter experimenteller Daten erstellt. Diese Simulation zeigt, dass neben Schwefelsäure noch zwei weitere Substanzen entscheidend an der Bildung von Aerosolen beteiligt sind: organische Verbindungen und Ammoniak. Die Forschungsergebnisse wurden nun im renommierten Fachblatt Science veröffentlicht.

Forschende haben erstmalig eine computergestützte Modellsimulation der Bildung von Partikeln in der Atmosphäre erstellt, die vollständig auf experimentellen Daten beruht. Diese Experimente wurden im Laufe vieler Jahre in einem besonderen, hochentwickelten Labor durchgeführt: der CLOUD-Kammer des CERN.


Die PSI-Forschenden Jasmin Tröstl und Urs Baltensperger auf der CLOUD-Kammer am CERN, in der sie die Entstehung von Aerosolen in der Atmosphäre erforscht haben.

Foto: Paul Scherrer Institut/Markus Fischer


PSI-Forschende vor der CLOUD-Kammer am CERN.

Foto: Paul Scherrer Institut/Markus Fischer

Die so fundierten Simulationen zeigen, dass atmosphärische Partikel – sogenannte Aerosole – aus Molekülclustern hervorgehen, die Schwefelsäure, organische Verbindungen und Ammoniak enthalten. Während die wichtige Rolle der Schwefelsäure für den Keimbildungsprozess, der zu Aerosolpartikeln führt, schon länger bekannt war, zeigen die neuen Forschungsergebnisse, dass auch organische Verbindungen und Ammoniak hierbei entscheidende Beiträge leisten.

„Es ist nicht nur Schwefelsäure: Auch organische Verbindungen und Ammoniak sind für die Keimbildung unerlässlich – wir können ihren Beitrag nicht länger ignorieren“, sagt Urs Baltensperger, Leiter des Labors für Atmosphärenchemie am Paul Scherrer Institut PSI und Mitautor der neuen Studie.

Während die innovative Computersimulation von Forschenden an der Universität Leeds geleitet wurde, waren Wissenschaftler am PSI massgeblich an den CLOUD-Messungen beteiligt, die die Grundlage für diese Simulation bilden. Die PSI-Forschenden hatten auch veranlasst, dass organische Verbindungen in die Messungen einbezogen wurden. „Von Anfang an waren wir sicher, dass organische Verbindungen von grosser Bedeutung sind, und hatten daher auf diesen Teil des gemeinsamen Projekts gedrängt“, erinnert sich Baltensperger.

Baltensperger und seine Mitarbeitenden am PSI trugen auch zu den Messungen von Ammoniak bei, indem sie eine Methode entwickelten, die die Bestimmung von Ammoniakkonzentrationen weit unterhalb der vorherigen Nachweisgrenze erlaubte. „Dies hat sich als sehr wichtig erwiesen: Unsere neuesten Ergebnisse zeigen, dass Ammoniakkonzentrationen, die vorher nicht einmal nachgewiesen werden konnten, die Keimbildungsrate deutlich erhöhen – unter gewissen Umständen auf das 100-fache des Werts, der bei Schwefelsäure alleine vorliegt!“

Eine weitere Erkenntnis, die die neue Computersimulation brachte, ist, dass durch kosmische Strahlung ausgelöste Ionisationsprozesse in der Atmosphäre für fast ein Drittel aller entstehenden Aerosolpartikel verantwortlich sind. Die Simulationen zeigen jedoch auch, dass geringe Variationen der kosmischen Strahlungsrate die Aerosolbildung nicht so stark ändern, dass dies einen merklichen Einfluss auf das heutige Klima hätte.

Das CLOUD-Experiment

Am CLOUD-Experiment des CERN beschäftigen sich Forschende mit einem anspruchsvollen und seit Langem bestehenden Problem der Atmosphärenforschung: der Frage, wie genau neue Partikel in der Atmosphäre entstehen und wie sich diese Aerosole auf das Klima auswirken. Luftverschmutzung erhöht die Konzentration von Aerosolen in der Atmosphäre, was zur Bildung zusätzlicher Wolkentröpfchen führt, somit zu helleren Wolken und damit wiederum zur Kühlung der Erde. Denn hellere Wolken reflektieren einen grösseren Anteil der Sonnenstrahlen zurück in den Weltraum; es wird angenommen, dass dieser Mechanismus bislang einen beträchtlichen Teil der durch menschengemachte Treibhausgase verursachten Klimaerwärmung ausgeglichen hat.

Das Hauptziel des CLOUD-Experiments ist ein besseres Verständnis der Aerosolbildung in der Atmosphäre durch einen „Nukleation“ oder „Keimbildung“ genannten Prozess. Die Nukleation erfolgt, wenn sich bestimmte Moleküle in der Atmosphäre zusammenballen und so zu neuen Partikeln anwachsen. Nukleation ist für das Verständnis unseres Klimas relevant, da nach derzeitigen Schätzungen etwa die Hälfte aller Wolkentröpfchen auf so gebildete Aerosolpartikel zurückzuführen sind.

Am CLOUD-Experiment wird die Nukleation von Aerosolen in einer speziell konstruierten Kammer und unter stark kontrollierten Umgebungsbedingungen und Konzentrationen von Keimbildungsgasen vermessen. Hochmoderne Instrumente verfolgen die Partikelbildung von den ersten Molekülclustern bis zu Partikeln von etwa hundert Nanometern Durchmesser, die zur Bildung von Wolkentröpfchen führen können. Die CLOUD-Kammer weist extrem geringe Verunreinigungswerte auf. Das ermöglicht es den Forschenden, die Keimbildung durch kontrollierte Mengen von ausgewählten Gasen ohne die komplizierende Wirkung von nicht erkannten Gasen zu messen. Ein weiterer einzigartiger Aspekt von CLOUD ist die Möglichkeit, die Effekte von elektrisch geladenen Molekülen zu messen, die durch kosmische Strahlung entstehen.

CLOUD fördert unser Verständnis von Aerosolpartikeln in der Atmosphäre

Seit mehr als 30 Jahren entwickeln Forschende Computersimulationen der Atmosphärenchemie auf der Grundlage von Labormessungen der chemischen Reaktionsgeschwindigkeiten. Diese Simulationen sind seit Langem entscheidend für unser Verständnisses der Atmosphäre, darunter für die Vorhersagen zur Luftverschmutzung und zur Zerstörung der Ozonschicht. Aufgrund der enormen Herausforderungen bei der zuverlässigen Messung der Partikelbildung im Labor war ein solch tiefgehendes Verständnis für Aerosolpartikel in der Atmosphäre vormalig nicht erreichbar.

Text: Auf Grundlage einer Mitteilung der Universität Leeds mit Ergänzungen durch das Paul Scherrer Institut


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2000 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 370 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.

Kontakt/Ansprechpartner
Prof. Dr. Urs Baltensperger, Leiter des Labors für Atmosphärenchemie,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 24 08, E-Mail: urs.baltensperger@psi.ch [Deutsch, Englisch]

Originalveröffentlichung
Global atmospheric particle formation from CERN CLOUD measurements
E. M. Dunne et al.
Science, 27. Oktober 2016
DOI: http://dx.doi.org/10.1126/science.aaf2649

Weitere Informationen:

http://psi.ch/Cmrm – Heutige Messungen liefern Einsichten über Wolken in der Vergangenheit
http://psi.ch/e5at – Darstellung der Mitteilung auf der Webseite des PSI

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blauer Phosphor – jetzt erstmals vermessen und kartiert
15.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungsnachrichten

Neue Methode der statistischen Inferenz in der Magnetresonanztomographie (fMRI) entwickelt

16.10.2018 | Medizintechnik

Tiefsee ergründen – erstmalige LIBS-Messung bei 600 bar

16.10.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics