Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Stoffe, die Wolken heller machen

28.10.2016

Wolken bestehen aus winzigen Tröpfchen. Diese Tröpfchen bilden sich, wenn das Wasser an sogenannten Aerosolen kondensiert – an kleinen Partikeln in der Atmosphäre. Um besser zu verstehen, wie wiederum Aerosole entstehen, haben Forschende nun eine umfassende Computersimulation auf der Grundlage detaillierter experimenteller Daten erstellt. Diese Simulation zeigt, dass neben Schwefelsäure noch zwei weitere Substanzen entscheidend an der Bildung von Aerosolen beteiligt sind: organische Verbindungen und Ammoniak. Die Forschungsergebnisse wurden nun im renommierten Fachblatt Science veröffentlicht.

Forschende haben erstmalig eine computergestützte Modellsimulation der Bildung von Partikeln in der Atmosphäre erstellt, die vollständig auf experimentellen Daten beruht. Diese Experimente wurden im Laufe vieler Jahre in einem besonderen, hochentwickelten Labor durchgeführt: der CLOUD-Kammer des CERN.


Die PSI-Forschenden Jasmin Tröstl und Urs Baltensperger auf der CLOUD-Kammer am CERN, in der sie die Entstehung von Aerosolen in der Atmosphäre erforscht haben.

Foto: Paul Scherrer Institut/Markus Fischer


PSI-Forschende vor der CLOUD-Kammer am CERN.

Foto: Paul Scherrer Institut/Markus Fischer

Die so fundierten Simulationen zeigen, dass atmosphärische Partikel – sogenannte Aerosole – aus Molekülclustern hervorgehen, die Schwefelsäure, organische Verbindungen und Ammoniak enthalten. Während die wichtige Rolle der Schwefelsäure für den Keimbildungsprozess, der zu Aerosolpartikeln führt, schon länger bekannt war, zeigen die neuen Forschungsergebnisse, dass auch organische Verbindungen und Ammoniak hierbei entscheidende Beiträge leisten.

„Es ist nicht nur Schwefelsäure: Auch organische Verbindungen und Ammoniak sind für die Keimbildung unerlässlich – wir können ihren Beitrag nicht länger ignorieren“, sagt Urs Baltensperger, Leiter des Labors für Atmosphärenchemie am Paul Scherrer Institut PSI und Mitautor der neuen Studie.

Während die innovative Computersimulation von Forschenden an der Universität Leeds geleitet wurde, waren Wissenschaftler am PSI massgeblich an den CLOUD-Messungen beteiligt, die die Grundlage für diese Simulation bilden. Die PSI-Forschenden hatten auch veranlasst, dass organische Verbindungen in die Messungen einbezogen wurden. „Von Anfang an waren wir sicher, dass organische Verbindungen von grosser Bedeutung sind, und hatten daher auf diesen Teil des gemeinsamen Projekts gedrängt“, erinnert sich Baltensperger.

Baltensperger und seine Mitarbeitenden am PSI trugen auch zu den Messungen von Ammoniak bei, indem sie eine Methode entwickelten, die die Bestimmung von Ammoniakkonzentrationen weit unterhalb der vorherigen Nachweisgrenze erlaubte. „Dies hat sich als sehr wichtig erwiesen: Unsere neuesten Ergebnisse zeigen, dass Ammoniakkonzentrationen, die vorher nicht einmal nachgewiesen werden konnten, die Keimbildungsrate deutlich erhöhen – unter gewissen Umständen auf das 100-fache des Werts, der bei Schwefelsäure alleine vorliegt!“

Eine weitere Erkenntnis, die die neue Computersimulation brachte, ist, dass durch kosmische Strahlung ausgelöste Ionisationsprozesse in der Atmosphäre für fast ein Drittel aller entstehenden Aerosolpartikel verantwortlich sind. Die Simulationen zeigen jedoch auch, dass geringe Variationen der kosmischen Strahlungsrate die Aerosolbildung nicht so stark ändern, dass dies einen merklichen Einfluss auf das heutige Klima hätte.

Das CLOUD-Experiment

Am CLOUD-Experiment des CERN beschäftigen sich Forschende mit einem anspruchsvollen und seit Langem bestehenden Problem der Atmosphärenforschung: der Frage, wie genau neue Partikel in der Atmosphäre entstehen und wie sich diese Aerosole auf das Klima auswirken. Luftverschmutzung erhöht die Konzentration von Aerosolen in der Atmosphäre, was zur Bildung zusätzlicher Wolkentröpfchen führt, somit zu helleren Wolken und damit wiederum zur Kühlung der Erde. Denn hellere Wolken reflektieren einen grösseren Anteil der Sonnenstrahlen zurück in den Weltraum; es wird angenommen, dass dieser Mechanismus bislang einen beträchtlichen Teil der durch menschengemachte Treibhausgase verursachten Klimaerwärmung ausgeglichen hat.

Das Hauptziel des CLOUD-Experiments ist ein besseres Verständnis der Aerosolbildung in der Atmosphäre durch einen „Nukleation“ oder „Keimbildung“ genannten Prozess. Die Nukleation erfolgt, wenn sich bestimmte Moleküle in der Atmosphäre zusammenballen und so zu neuen Partikeln anwachsen. Nukleation ist für das Verständnis unseres Klimas relevant, da nach derzeitigen Schätzungen etwa die Hälfte aller Wolkentröpfchen auf so gebildete Aerosolpartikel zurückzuführen sind.

Am CLOUD-Experiment wird die Nukleation von Aerosolen in einer speziell konstruierten Kammer und unter stark kontrollierten Umgebungsbedingungen und Konzentrationen von Keimbildungsgasen vermessen. Hochmoderne Instrumente verfolgen die Partikelbildung von den ersten Molekülclustern bis zu Partikeln von etwa hundert Nanometern Durchmesser, die zur Bildung von Wolkentröpfchen führen können. Die CLOUD-Kammer weist extrem geringe Verunreinigungswerte auf. Das ermöglicht es den Forschenden, die Keimbildung durch kontrollierte Mengen von ausgewählten Gasen ohne die komplizierende Wirkung von nicht erkannten Gasen zu messen. Ein weiterer einzigartiger Aspekt von CLOUD ist die Möglichkeit, die Effekte von elektrisch geladenen Molekülen zu messen, die durch kosmische Strahlung entstehen.

CLOUD fördert unser Verständnis von Aerosolpartikeln in der Atmosphäre

Seit mehr als 30 Jahren entwickeln Forschende Computersimulationen der Atmosphärenchemie auf der Grundlage von Labormessungen der chemischen Reaktionsgeschwindigkeiten. Diese Simulationen sind seit Langem entscheidend für unser Verständnisses der Atmosphäre, darunter für die Vorhersagen zur Luftverschmutzung und zur Zerstörung der Ozonschicht. Aufgrund der enormen Herausforderungen bei der zuverlässigen Messung der Partikelbildung im Labor war ein solch tiefgehendes Verständnis für Aerosolpartikel in der Atmosphäre vormalig nicht erreichbar.

Text: Auf Grundlage einer Mitteilung der Universität Leeds mit Ergänzungen durch das Paul Scherrer Institut


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 2000 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 370 Mio. Das PSI ist Teil des ETH-Bereichs, dem auch die ETH Zürich und die ETH Lausanne angehören sowie die Forschungsinstitute Eawag, Empa und WSL.

Kontakt/Ansprechpartner
Prof. Dr. Urs Baltensperger, Leiter des Labors für Atmosphärenchemie,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 56 310 24 08, E-Mail: urs.baltensperger@psi.ch [Deutsch, Englisch]

Originalveröffentlichung
Global atmospheric particle formation from CERN CLOUD measurements
E. M. Dunne et al.
Science, 27. Oktober 2016
DOI: http://dx.doi.org/10.1126/science.aaf2649

Weitere Informationen:

http://psi.ch/Cmrm – Heutige Messungen liefern Einsichten über Wolken in der Vergangenheit
http://psi.ch/e5at – Darstellung der Mitteilung auf der Webseite des PSI

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome hüpfen nicht gerne Seil
19.11.2019 | Universität Innsbruck

nachricht Eine Fernsteuerung für alles Kleine
19.11.2019 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Im Focus: Der direkte Weg zur Phosphorverbindung: Regensburger Chemiker entwickeln Katalysemethode

Wissenschaftler finden effizientere und umweltfreundlichere Methode, um Produkte ohne Zwischenstufen aus weißem Phosphor herzustellen.

Pflanzenschutzmittel, Dünger, Extraktions- oder Schmiermittel – Phosphorverbindungen sind aus vielen Mitteln für den Alltag und die Industrie nicht...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Atome hüpfen nicht gerne Seil

19.11.2019 | Physik Astronomie

Bildoptimierung von Videosequenzen mit hohem Dynamikbereich

19.11.2019 | Kommunikation Medien

Klimaneutrale Energieversorgung der Zukunft

19.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics