Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Quanten beim Springen zusehen

07.11.2016

Die bisher genauste zeitliche Vermessung von Quantensprüngen gelang in einem Forschungsprojekt von TU Wien und Max-Planck-Institut für Quantenoptik in Garching.

Ganz plötzlich können Quantenteilchen ihren Zustand ändern, man spricht dann oft von „Quantensprüngen“. So können Atome zum Beispiel ein Lichtteilchen absorbieren und dadurch in einen Zustand mit höherer Energie wechseln. Meistens geht man davon aus, dass solche Vorgänge ganz abrupt ablaufen, von einem Augenblick auf den anderen.


Ein Laserpuls trifft auf ein Heliumatom und entreißt ihm ein Elektron.

TU Wien


Stefan Nagele, Joachim Burgdörfer und Renate Pazourek (v.r.)

TU Wien

Mit neuen Methoden, die an der TU Wien maßgeblich mitentwickelt wurden, gelingt es nun allerdings, die zeitliche Struktur dieser extrem schnellen Übergänge zu studieren. Ähnlich wie das Elektronenmikroskop erlaubt, einen Blick auf winzige räumliche Strukturen zu werfen, die für das Auge unsichtbar sind, kann man nun mit Hilfe ultrakurzer Laserpulse zeitliche Strukturen analysieren, die uns bisher verborgen waren.

Den theoretischen Teil der Forschungsarbeit übernahm das Team von Prof. Joachim Burgdörfer an der TU Wien, das auch die ursprüngliche Idee für das Experiment entwickelt hatte. Der experimentelle Teil wurde am Max-Planck-Institut für Quantenoptik in Garching durchgeführt. Die Ergebnisse wurden nun im Fachjournal „Nature Physics“ publiziert.

Die genaueste Zeitmessung eines Quantensprungs

Ein neutrales Heliumatom hat zwei Elektronen. Wenn man es mit einem energiereichen Laserpuls beschießt, kann es zur Ionisation kommen: Eines der Elektronen wird vom Laserpuls fortgerissen und verlässt das Atom. Dieser Prozess läuft auf der Zeitskala von Attosekunden ab – eine Attosekunde ist ein Milliardstel einer Milliardstelsekunde.

„Nun könnte man glauben, dass das zweite Elektron, das im Atom bleibt, bei diesem Prozess gar keine Rolle spielt – das stimmt aber nicht“, sagt Renate Pazourek (TU Wien). Die beiden Elektronen sind korreliert, also quantenphysikalisch eng miteinander verbunden, daher kann man sie nicht isoliert voneinander betrachten. „Wenn das eine Elektron aus dem Atom gerissen wird, kann es passieren, dass ein Teil der Laser-Energie auf das zweite Elektron übertragen wird. Es bleibt zwar im Atom gebunden, wird aber in einen höheren Energiezustand versetzt“, erklärt Stefan Nagele (ebenfalls TU Wien).

Man kann also zwei verschiedene Ionisationsprozesse beobachten: Einen, in dem das verbleibende Elektron zusätzliche Energie bekommt, und einen, in dem es im Zustand minimaler Energie bleibt. Mit Hilfe eines ausgeklügelten Versuchsaufbaus mit zwei verschiedenen Lasern konnte man nun zeigen, dass diese beiden Prozesse nicht exakt gleich lange dauern.

„Wenn das verbleibende Elektron einen Teil der Energie abbekommt, dann läuft der Photoionisationsprozess schneller ab – um etwa fünf Attosekunden“, erklärt Stefan Nagele. Bemerkenswert ist, wie gut theoretische Berechnungen und aufwändige Computersimulationen (durchgeführt am Vienna Scientific Cluster, Österreichs größtem Supercomputer) mit den Messungen übereinstimmen: „Die Genauigkeit des Experiments liegt bei weniger als einer Attosekunde, das ist die genaueste Zeitmessung für einen Quantensprung, die es bisher gab“, sagt Renate Pazourek.

Kontrolle über die Attosekunde

Das Experiment liefert neue Einblicke in die Physik ultrakurzer Zeitskalen. Was man vor wenigen Jahrzehnten noch als „plötzlich“ oder „instantan“ gesehen hat, lässt sich heute als zeitliche Entwicklung betrachten, die man berechnen, messen und sogar kontrollieren kann. Das hilft nicht nur dabei, die grundlegenden Gesetze der Natur besser zu verstehen, es ermöglicht auch neue Methoden, die Materie auf kleinster Skala zu manipulieren.

Originalpublikation: Attosecond Correlation Dynamics, M. Ossiander et al. Nature Physics

Rückfragehinweis:
Dr. Renate Pazourek
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13633
renate.pazourek@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Atom Attosekunde Elektron Elektronen Laserpuls Nature Physics Physics Quanten Zeitmessung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blauer Phosphor – jetzt erstmals vermessen und kartiert
15.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Multiresistente Keime aus Abwasser filtern

16.10.2018 | Ökologie Umwelt- Naturschutz

Pilz schlägt sich mit eigenen Waffen

16.10.2018 | Biowissenschaften Chemie

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics