Datensicherheit: Aufbruch in die Quantentechnologie

Mikrotürmchen mit Quantenpunkten sollen dabei mithelfen, die Datenkommunikation abhörsicher zu machen. Entwickelt werden sie an der Uni Würzburg. (Bild: Tobias Huber)

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die Quantenkommunikation ein vielversprechender Ansatz:

Als Informationsträger nutzt sie Quantenzustände, die aufgrund fundamentaler physikalischer Gesetze weder kopiert noch unbemerkt mitgelesen werden können.

Um den Aufbruch in die Quantentechnologie zu unterstützen, fördert das Bundesministerium für Bildung und Forschung (BMBF) das neue Verbundprojekt „Quanten-Link-Erweiterung“ (Q.Link.X).

Es stellt dafür in den kommenden drei Jahren 14,8 Millionen Euro bereit. „Das Ziel sind physikalisch abhörsichere Netzwerke auf der Basis von Glasfasern“, sagt Professor Dieter Meschede vom Bonner Institut für Angewandte Physik, das die Sprecherfunktion im Verbund innehat.

Quantenkommunikation stößt noch an Grenzen

Dieser Paradigmenwechsel in der Daten- und Nachrichtenverschlüsselung – weg von algorithmischen Verfahren, hin zur Quantentechnologie – stößt jedoch an Grenzen:

Bei der Übertragung von Quanteninformation mit Lichtteilchen (Photonen) kommt es zu unvermeidbaren Leitungsverlusten. Dadurch sind die Übertragungsstrecken bisher auf weniger als 100 Kilometer begrenzt.

„Mit Quantenrepeatern soll diese Grenze ohne Sicherheitseinschränkungen überwunden werden“, sagt Dieter Meschede. Repeater (Wiederholstationen) sind in der Kommunikationstechnik Signalverstärker oder -aufbereiter. Sie empfangen Signale und senden sie in aufbereiteter Form weiter, um die Reichweite der Signale zu erhöhen und eine größere Distanz zu überbrücken. Die Entwicklung solcher Quantenrepeater soll im BMBF-Projekt vorangetrieben werden.

Komplette Kommunikationsstrecke angestrebt

Drei verschiedene technische Plattformen kommen hierfür zum Einsatz: Quantenpunkte, Diamant-Farbzentren und eine Kombination aus atomaren und ionischen Systemen. Damit sollen Übertragungsstrecken von zunächst bis zu zehn oder 100 Kilometern realisiert und die Vorteile der jeweiligen Systeme einander gegenübergestellt werden.

„In Q.Link.X werden erstmals nicht nur einzelne Komponenten eines Quantenrepeaters, sondern komplette Kommunikationsstrecken erforscht und entwickelt“, sagt Meschede. Diese Arbeiten sollen eine Technologie vorbereiten, mit der sich später auch viel längere Strecken überbrücken lassen – von einigen hundert bis zu einigen tausend Kilometern über Glasfasern.

JMU: Quantenpunkte in Mikrotürmchen

Die Julius-Maximilians-Universität Würzburg (JMU) erhält aus dem Verbundprojekt über 1,2 Millionen Euro. Auf dem Hubland-Campus wird unter der Leitung von Professor Sven Höfling am Lehrstuhl für technische Physik daran gearbeitet, ein Segment für Quantenrepeater zu bauen, das auf Halbleiterquantenpunkten in Mikrotürmchen basiert. Das Projektteam entwirft und baut die Mikrotürmchen und fügt sie am Ende in die Kommunikationsstrecke ein.

In den Quantenpunkten der Türmchen wird Quanteninformation aus einem Photon gespeichert, anschließend ausgelesen und wieder in ein Photon codiert.

„Durch die Interferenz von zwei Photonen, die von zwei entfernten Quantenpunkten stammen, kann ein verschränkter Quantenzustand erzeugt werden, der zugleich in den beiden entfernten Quantenpunkten existiert“, sagt JMU-Physiker Dr. Tobias Huber. Dieser Zustand kann anschließend an beiden Quantenpunkten wieder ausgelesen werden.

In einem Netzwerk sollte sich dieser Zustand dann sequenziell von Repeater zu Repeater weitergeben lassen – so müssten beliebige Distanzen überbrückbar sein.

24 Partner treiben Q.Link.X voran

Die enge Einbindung industrieller Partner und Berater soll die Realisierbarkeit aus industrieller und ingenieurstechnischer Sicht von vornherein erleichtern. Die Ergebnisverwertung in Deutschland soll durch Patente und Ausgründungen des Konsortiums gesichert werden. Im Q.Link.X-Verbund haben sich 24 Partner aus Forschungseinrichtungen von Universitäten bis zu Industrielabors zusammengefunden, um die Schlüsseltechnologie der Quantenrepeater zu erforschen.

Dr. Tobias Huber, Lehrstuhl für Technische Physik der JMU, T +49 931 31- 84117, tobias.huber@uni-wuerzburg.de

Prof. Dr. Sven Höfling, Lehrstuhl für Technische Physik der JMU, T +49 931 31-83613, sven.hoefling@uni-wuerzburg.de

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/q-link.x Website des Projekts

Media Contact

Robert Emmerich Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer