Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfahrung sammeln für das Lichtmonster

19.12.2005


Physiker des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie wollen ultrakurze Synchrotron- und Röntgenblitze erzeugen. Das MBI hat dafür in einem Wettbewerbsverfahren Mittel aus dem Pakt für Forschung und Innovation eingeworben.
"Dann schau’n wir uns die Elektronen an." Aus dem Mund des Münchner Physikers Martin Weinelt klingt das wie eine Selbstverständlichkeit. Doch in Wirklichkeit beschreibt der Professor am Max-Born-Institut mit dem lapidaren Satz einen Gang an die Grenzen der bisherigen Experimentalphysik. Denn Elektronen kann man nicht sehen, ihr Verhalten lässt sich nur mit Wahrscheinlichkeiten beschreiben, aber nicht im Einzelnen nachverfolgen.

... mehr zu:
»BESSY »MBI


Und doch untersuchen Weinelt und seine Kollegen am MBI einzelne Elektronen. Sie beschießen dazu Edelgase mit kurzen, hochenergetischen Laserblitzen und beschleunigen Atome darin so stark, dass Elektronen aus der Bahn geraten. Die Energie ist so dosiert, dass die Elektronen wieder in ihre Bahnen zurückkehren - würden sie fortgerissen, so würde das Atom zu einem Ion, das Gas wäre ionisiert. Fallen die Elektronen dagegen in ihr ursprüngliches Energieniveau zurück, senden sie ein Photon aus. "Wir benutzen diese Photonen, um damit andere Elektronen zu untersuchen", sagt Weinelt. Lichtteilchen und Elektron beeinflussen sich gegenseitig, sie interagieren - wie, das lässt sich mit der so genannten Photoelektronen-Spektroskopie messen.

Mit einem einzigen "Schuss" aus dem Laser würden die Forscher eine Momentaufnahme erhalten. Der Clou ist es nun, möglichst viele extrem kurze Pulse rasch hintereinander abzufeuern, um daraus eine Art Film mit vielen Bildern herzustellen. Auf diese Weise erhalten die Forscher Einblicke in Elektronenbewegungen. Ihre Erkenntnisse sind beispielsweise für die Dynamik von chemischen Reaktionen entscheidend, aber auch für ultraschnelle Magnetisierungsprozesse. "Wir wollen herausfinden, wie schnell eine Festplatte beschrieben werden kann", sagt Weinelt.

Zusammen mit Kollegen aus dem MBI und dem benachbarten Elektronenspeicherring für Synchrotronstrahlung BESSY will der Forscher nun die Grenzen der Kurzzeitphysik weiter ausdehnen - noch heller und farbiger soll das Licht werden, mit dem Forscher ihre Proben untersuchen, und zugleich soll sich die Pulsdauer nicht verlängern. Das Projekt erhielt im Rahmen des Wettbewerbs um die Mittel aus dem Pakt für Innovation eine Förderzusage. Das beantragte Gesamtvolumen beläuft sich auf 1,2 Millionen Euro in den nächsten drei Jahren.

Endziel ist ein Gerät zur Photoelektronen-Spektroskopie, das bei BESSY stehen wird und dort die hochbrillante Synchrotronstrahlung in ganz kurze Lichtblitze zerlegt. Wie geht das? Weinelt: "Ein Teil des Projektes besteht darin, einen unserer Kurzpuls-Laser mit dem Elektronenstrahl von BESSY so zu synchronisieren, dass aus den im Kreis herumsausenden Elektronenpaketen eine hauchdünne Scheibe herausgeschnitten wird." Die Länge der Pakete bemisst sich nach der Zeit, die sie brauchen, um einen Punkt zu passieren. Sie liegt bei 50 Pikosekunden, das sind 50 Millionstel Millionstel Sekunden. Mit Lichtgeschwindigkeit kommen die Elektronen in dieser Zeit eineinhalb Zentimeter weit. Aus so einem daumennagel-langen Elektronenpaket schneiden die Forscher mithilfe von Ablenkmagneten eine Scheibe heraus, die nicht dicker ist als ein menschliches Haar - 0,03 Millimeter. In Zeit ausgedrückt: Der Puls ist 100 Femtosekunden kurz, also 100 Milliardstel Millionstel Sekunden und verhält sich damit zu einer Minute in etwa so wie zehn Minuten zum Alter des Universums.

Darüber hinaus wollen die Wissenschaftler am Max-Born-Institut mit ihren Lasern selbst kurzwelliges Licht erzeugen - im Bereich von VUV- und Röntgenstrahlen. VUV steht für Vakuumultraviolett. Das erzeugte Licht hat Wellenlängen zwischen 10 und 100 Nanometern. Was ist der Vorteil dieser kurzen Wellenlängen? "Je kürzer die Wellenlänge", sagt Weinelt, "desto mehr Energie steckt im einzelnen Lichtteilchen und desto tiefer können wir in die Atome hineinschauen."

Das MBI und BESSY ergänzen sich dabei in idealer Weise. Die Wissenschaftler des Max-Born-Instituts bringen die Expertise zur Erzeugung ultrakurzer Lichtimpulse mit, überdies verfügen sie bereits über eine einzigartige Quelle für inkohärente Röntgenstrahlen. Inkohärent bedeutet, dass nicht alle Lichtteilchen exakt im Gleichklang schwingen; Licht einer Glühlampe ist zum Beispiel inkohärent. Die BESSY-Forscher dagegen haben große Erfahrung mit hochbrillantem Licht und mit den Geräten, die diese Strahlung aushalten müssen. Außerdem verfügen sie über das Know-how, das Licht so zu verändern, dass es zum Durchleuchten der Atome nutzbar wird. "Man könnte auch einfarbig oder monochrom sagen", erläutert Weinelt. Die Maschinen dazu heißen dementsprechend Monochromatoren.

Am Ende soll eine Anlage entstehen, so groß wie ein Kleinlaster, die es den Forschern erlaubt, bisher nicht für möglich gehaltene Einblicke in die Materie zu erhalten. "Unser Konzept sieht ausdrücklich vor, dass wir auch externen Nutzern zur Verfügung stehen", sagt Weinelt. "Bei uns können und sollen also Forscher aus aller Welt Experimente durchführen." Solche Experimente werden in Zukunft am Freie-Elektronen-Laser in Hamburg und, so hofft Weinelt, auch an einer weiterentwickelten Version in Berlin bei BESSY stattfinden. Der Laser in Hamburg, eben erst wurde der Bau beschlossen, wird ein wahres Lichtmonster sein und das, was derzeit bei BESSY und am MBI passiert, in den Schatten stellen. Um so wichtiger ist es, jetzt schon Erfahrungen mit solchen Strahlen zu sammeln. Weinelt: "Wir bereiten die jungen Wissenschaftler von heute auf die Fragestellungen und Experimente von morgen vor."

Ansprechpartner:
Prof. Dr. Martin Weinelt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie
Max-Born-Straße 2A
12489 Berlin
Tel: 030-6392-1210
Mail: weinelt@mbi-berlin.de

Josef Zens | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: BESSY MBI

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics