Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutsche Spitzentechnik für Hubble-Nachfolger

06.12.2005


Das "James Webb Space Telescope" ist ein europäisch-amerikanisches Projekt. Die Leistungsfähigkeit dieses Weltraumteleskop wird jene seines Vorgängers, des legendären Hubble Space Telescope, weit übertreffen. Bild: NASA


Das von MPIA und C. Zeiss entwickelte, hochkomplexe Filterrad für das Instrument MIRI, eines der drei Messinstrumente des JWST. Bild: MPI für Astronomie


Carl Zeiss und Max-Planck-Forscher entwickeln Hochtechnologie für größtes Weltraumteleskop

... mehr zu:
»Astronomie »JWST »MPIA »Zeiss

Carl Zeiss Optronics Oberkochen und das Max-Planck-Institut für Astronomie in Heidelberg (MPIA) entwickeln das feinmechanisch-optische Herzstück für zwei Instrumente des neuen James Webb Weltraum-Teleskops (JWST). Im Auftrag der Weltraumbehörden ESA und NASA wird das JWST mit einem 6,5-Meter-Spiegel als Nachfolger des legendären Weltraumteleskops HUBBLE in den kommenden acht Jahren Gestalt annehmen. Am 29. November wurden die Verträge zwischen Carl Zeiss und dem Max-Planck-Institut für Astronomie über die gemeinsame Arbeit an den Instrumenten MIRI und NIRSpec für das JWST unterzeichnet.

Das Weltraum-Teleskop JAMES WEBB wird das Weltraumteleskop HUBBLE im nächsten Jahrzehnt als erfolgreichstes astronomisches Beobachtungsinstrument ablösen. Das wichtigste wissenschaftliche Ziel dieser Mission ist die Entdeckung des "ersten Lichts" im frühen Universum, also der Entstehung der ersten Sterne aus dem langsam abkühlenden Feuerball des Urknalls. Das Licht dieser ersten Sterne und Galaxien ist extrem in den roten Spektralbereich verschoben, weil es durch die laufende Ausdehnung des Universums um das etwa zwanzigfache in der Wellenlänge gedehnt ist. Deshalb kann das frühe Universum nur im infraroten Spektralbereich beobachtet werden. Hier würden die schwachen kosmischen Quellen durch die Infrarot- (Wärme-) Strahlung des Teleskops und der Instrumente überblendet. Um die winzigen Signale von dieser Störstrahlung zu befreien, muss das Teleskop tief gekühlt werden.


Das JWST wird daher im "Lagrange-Punkt L2" stationiert, der sich 1.5 Millionen Kilometer außerhalb der Erdbahn befindet. Weil sich dort die Anziehung von Sonne und Erde addieren, läuft das JWST synchron mit der Erde um die Sonne und ist stets von der Sonne abgewandt. Hier kühlen sich das Teleskop und die Instrumente durch den Blick in den kalten Kosmos auf -230 Grad Celsius ab. Die extrem hohe Empfindlichkeit, kombiniert mit der hohen Auflösung des sehr großen Teleskops, wird auch zu ganz neuen Einsichten bei der Entstehung von Sternen und Planeten in unserem eigenen Milchstraßensystem führen. Diese Untersuchungen sind nur im infraroten Licht möglich, da dieses - anders als sichtbares Licht - die dichten Gas- und Staubwolken, in denen die Sterne und Planeten entstehen, fast ungeschwächt durchdringen kann.

Die Anforderungen an das Teleskop und seine Instrumente sind immens. Nach einer Startbelastung mit einem Vielfachen der Erdbeschleunigung werden die Instrumente im All bis nahe an den absoluten Temperatur-Nullpunkt (-273 Grad Celsius) gekühlt. Nach der Entfaltung des Teleskops am Zielort sollen dann die astronomischen Instrumente mit einer Genauigkeit ausgerichtet und festgehalten werden, die in etwa dem Zielen auf einen einem Stecknadelkopf in einem Kilometer Entfernung entspricht.

Zur Datenaufnahme hat die Weltraum-Sternwarte drei Instrumente an Bord - mit den Namen MIRI, NIRSpec und NIRCam. MIRI und NIRSpec werden in Europa entwickelt und gebaut. Carl Zeiss und das MPIA werden als einzige europäische Vertreter zu beiden Instrumenten einen entscheidenden Beitrag leisten.

Für das MIRI-Instrument wird C. ZEISS an das MPIA die Filter- und Gitterwechsler-Mechanismen liefern, durch die das Instrument für verschiedene Beobachtungsarten präzise konfiguriert werden kann. Dazu leistet das MPIA selbst einen wichtigen Beitrag zur Entwicklung und Test. Ferner wird C. ZEISS zwei Filter- und Gitterwechsler-Mechanismen für das NIRSpec-Instrument an EADS Astrium liefern. Hier wird das MPIA gleichermaßen sein Know-How einbringen. Beide Themen waren Gegenstand der Vertrags-Unterzeichnungen.

Aufgrund ähnlicher Anforderungen können die MIRI- und NIRSpec-Mechanismen als verwandt betrachtet werden. Entwicklung und Test der Mechanismen werden die kommenden zweieinhalb Jahre in Anspruch nehmen. Danach werden die von C. ZEISS und MPIA entwickelten Mechanismen in die jeweiligen Instrumente eingebaut. Eine europäische Ariane-5-Trägerrakete soll das JWST im Jahre 2013 an seinen Bestimmungsort auf der L2-Bahn bringen. Diese Vorhaben werden durch die Europäische Weltraum-Agentur ESA, das Deutsche Zentrum für Luft- und Raumfahrt DLR und die Max-Planck-Gesellschaft gefördert.

Bereits in der Vergangenheit haben C. ZEISS und das Max-Planck-Institut für Astronomie erfolgreich an anspruchsvollen Instrumenten für den Einsatz im Weltraum zusammengearbeitet, so zum Beispiel bei der Entwicklung der ISOPHOT-Mechanismen, welche wesentlich zum Erfolg des europäischen Infrarot-Weltraum-Observatoriums ISO beigetragen haben. In jüngster Zeit ist die Zusammenarbeit am PACS-Instrument des europäischen Weltraumobservatoriums HERSCHEL, das im Jahre 2008 starten wird, hervorzuheben.

Im Laufe dieser Kooperationen gelang es sowohl C. ZEISS als auch dem MPIA, ein hohes Maß an Vertrauen bei ihren internationalen Partnern zu erwerben. Beide Partner werden jetzt Neuland betreten. Die Heidelberger Astonomen wollen die Grenze des Dunklen Zeitalters des Universums erreichen, in dem es noch keine Sterne gab. Gemeinsam möchten sie optomechanische Systeme bisher unerreichter Qualität entwickeln, die den Erfolg der astronomischen "Flagschiff"-Mission JWST sichern, und die auch die Grundlage für hohe Wettbewerbsfähigkeit bei vielen denkbaren Anwendungen in der Zukunft bilden.

Weitere Informationen erhalten Sie von:

Dr. K. Weidlich
Carl Zeiss Optronics, Oberkochen
Tel.: 0736420-0
E-Mail: weidlich@zeiss.de

Prof. Dietrich Lemke
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-259
E-Mail: lemke@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-229
E-Mail: staude@mpia.de

Dr. Klaus Jäger
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-379
E-Mail: jaeger@mpia.de

Dr. Bernd Wirsing | MPG
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Astronomie JWST MPIA Zeiss

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln
23.10.2019 | Universität des Saarlandes

nachricht Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
22.10.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zebrafische reparieren ihr Herz dank spezieller Zellen

23.10.2019 | Biowissenschaften Chemie

Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

23.10.2019 | Materialwissenschaften

Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln

23.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics