Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jüngster Quasar durchleuchtet Urmaterie des Universums

10.08.2001


Abbildung 1:Der entfernteste Quasar erscheint auf der Entdeckungsaufnahme als ein schwach leuchtendes, auffallend rotes Objekt (Pfeil).
Foto: Sloan Digital Sky Survey


Abbildung 2: Das 2.5-Meter-Teleskop des Sloan Digital Sky Survey (SDDS) auf dem Apache Point im US-Bundesstaat New Mexico.
Foto: Sloan Digital Sky Survey


Heidelberger Astronomen gelingt aufregender Blick in die frühe Kindheit des Kosmos

Astronomen des Max-Planck-Instituts in Heidelberg haben zum ersten Mal die unverfälschte Urmaterie des Universums beobachtet und damit in eine Zeit etwa 700 Millionen Jahre nach dem Urknall zurückgeblickt. Für diese Entdeckung analysierten Dr. Laura Pentericci und Prof. Hans-Walter Rix vom Max-Planck-Institut für Astronomie in Heidelberg das Spektrum des Quasars SDSS 1030+0524. Dabei stellte sich heraus: Der rund 14,3 Milliarden Lichtjahre entfernte Quasar sitzt noch in einer neutralen intergalaktischen Materie, wie sie das sehr junge All ausfüllte.

Im Juni dieses Jahres fand Xiaohui Fan vom Institute of Advanced Studies in Princeton (USA) zwei neue Entfernungsrekordhalter: Quasare mit Rotverschiebungen von z = 6.28 und z = 5.99. Die Rotverschiebung z besagt, wie stark das Licht einer Galaxie aufgrund der Expansion des Weltalls in den langwelligen, roten Bereich des Spektrums verschoben ist und gilt gleichzeitig als Maß für die Zeit, die das Licht von dem Objekt bis zur Erde benötigt. Den Quasar mit der höchsten Rotverschiebung, der die Bezeichnung SDSS 1030+0524 erhielt, sehen wir zu einer Epoche, als das Universum nur etwa sechs Prozent seines heutigen Alters hatte. Das entspricht etwa 700 Millionen Jahre nach dem Urknall, der einem kosmologischen Modell zufolge vor 15 Milliarden Jahren stattgefunden hat. Allein aus der Existenz eines solchen Quasars zu einem derart frühen Zeitpunkt lassen sich interessante Schlüsse über die frühe Entwicklung des Kosmos und die Bil-dung der Galaxien ziehen. Quasare gelten als Millionen Sonnenmassen schwere Schwarze Löcher in den Zentren von Galaxien.

Laura Pentericci und Hans-Walter Rix vom Heidelberger Max-Planck-Institut für Astronomie haben an einem Acht-Meter-Spiegel des Very Large Telescope, dem von der Europäischen Südsternwarte (ESO) in Chile betriebenen Riesenteleskop, ein außergewöhnlich detailreiches Spektrum des Quasars SDSS 1030+0524 aufgenommen (Abb. 2). Die breite Emissionslinie bei 885 Nanometern ist die vom Quasar selbst ausgesandte Wasserstofflinie Lyman-alpha. Ursprünglich weit im ultravioletten Wellenlängenbereich emittiert, wurde sie auf der mehr als 14 Milliarden Jahre dauernden Reise bis zur Erde ins nahe Infrarot verschoben. In diesem Spektrum zeigt sich ein dramatischer Effekt: Normalerweise schließt sich an die Lyman-alpha-Emissionslinie zu kür-zeren Wellenlängen hin Kontinuumsstrahlung an. Aber bei dem Quasar SDSS 1030+0524 fehlt dieses "Lyman-Kontinuum" nahezu vollständig. Diese Unterdrückung des Kontinuums entsteht dadurch, dass neutrales intergalaktisches Gas, das sich jenseits einer Rotverschiebung z = 6.0, aber noch vor dem Quasar befindet, diese Strahlung verschluckt.

Abbildung 3: Das Spektrum des neuen Entfernungsrekordhalters SDSS 1030+0524, aufgenommen mit FORS 2 am Very Large Telescope. Im Bereich zwischen 835 und 875 Nanometern ist das Kontinuum auf höchstens 0,1Prozent des ursprünglichen Werts reduziert. Erst unterhalb von 835 Nanometern erhebt es sich schwach über dem Rauschen. Grafik: Max-Planck-Gesellschaft/Europäische Südsternwarte

Was bedeutet dieser Befund? Etwa 300.000 Jahre nach dem Urknall (z = 1000) war das Universum so weit abgekühlt, dass die Elektronen und Protonen sich zu neutralem Wasserstoff verbinden konnten. Erst sehr viel später, hinreichend lange nach der Bildung der Galaxien und nach dem Aufleuchten hinreichend vieler Quasare, wurde das intergalaktische Medium durch die heiße Strahlung der neuen Quellen abermals vollständig ionisiert, wurden also die Atome ihrer Elektronen beraubt. Die neuen Beobachtungen ermöglichen es, die Zeit einzugrenzen, in der diese Prozesse stattfand: So gab es etwa 700 Millionen Jahre nach dem Urknall schon voll ausgebildete Quasare. Außerdem war zu jener Zeit die von den soeben entstandenen ersten Quasaren bewirkte Re-Ionisation des intergalaktischen Mediums noch nicht abgeschlossen. Dass zu kleineren Rotverschiebungen als z = 6.0 hin das Kontinuum wieder ansteigt, liegt daran, dass das intergalaktische Wasserstoffgas mit wachsendem Alter des Universums zunehmend ionisiert wurde, und zwar von den mit der Zeit immer zahlreicher aufleuchtenden Quasaren.

Die Astronomen sind jetzt mit ihren Beobachtungen in eine Ära vorgedrungen, als sich aus dem noch neutralen Urgas die ersten Galaxien bildeten und in ihren Zentren die ersten Quasare aufleuchteten. Diese Himmelskörper, die das extragalaktische Gas mit ihrer intensiven UV- und Röntgenstrahlung zunehmend ionisierten, entstanden offenbar im Lauf von wenigen hundert Millionen Jahren - astronomisch gesehen praktisch "sofort" nach dem Urknall.

Die oben beschriebenen Rekordhalter unter den Quasaren in Bezug auf Entfernung und Jugend wurden im Rahmen des Sloan Digital Sky Survey (SDSS) entdeckt. Diese bislang umfangreichste digitale Himmelsdurchmusterung war im April 2000 in Angriff genommen worden. Das Projekt wird von einem Konsortium amerikanischer, japanischer und deutscher Institute durchgeführt. Auf deutscher Seite sind das Max-Planck-Institut für Astronomie in Heidelberg und das Max-Planck-Institut für Astrophysik in Garching beteiligt. Mit dieser Durchmusterung soll der halbe Nordhimmel in zahlreichen Farbbändern aufgenommen werden, besonders interessante und auffällige Objekte werden ständig spektroskopiert. Das auf dem Apache Point in New Mexico eigens für den SDSS gebaute, mit einer Mosaik-CCD-Kamera ausgerüstete 2,5-Meter-Teleskop (Abb. 3) war im Mai 1998 in Betrieb genommen und zunächst ausgiebig getestet worden.

Der endgültige Katalog aller erfassten Objekte wird Positionen und Farben von mehr als hundert Millionen Himmelskörper enthalten. Anhand ihrer Farben werden sich bereits viele auffallende Objekte identifizieren lassen. Für Nachbeobachtungen besonders interessanter Objekte steht auf dem selben Berg ein 3,5-Meter-Teleskop zur Verfügung. Insgesamt sollen Rotverschiebungen von etwa einer Million Galaxien und 100.000 Quasaren gemessen werden. Damit wird sich die räumliche Verteilung der Galaxien und Quasare in einem hundertfach größeren Volumen bestimmen lassen als bisher. Für die Astronomen werden die Daten ein reicher Fundus sein. Es werden sich daraus weitreichende Schlüsse über die frühe Entwicklung von Galaxien und Quasaren sowie auch über den Aufbau unseres Milchstraßensystems ergeben.

Im Sloan Digital Sky Survey haben die Astronomen von den erwarteten 100.000 neuen Quasaren bereits 13.000 aufgespürt, darunter 26 der 30 entferntesten Quasare und die beiden oben beschriebenen Rekordhalter. Der Datenstrom ist so groß, dass sich die Forscher zu seiner Bewältigung auf die Erfahrungen ihrer Kollegen am Teilchenbeschleuniger des Fermi National Laboratory in Chicago stützen. Dort werden die Rohdaten für die astronomische Auswertung aufbereitet. Die gesamte Durchmusterung wird etwa 15 Terabytes (1,5.10^13 Bytes) an Daten bringen; das entspricht der Speichermenge von 24.000 CD-ROMs. >

Prof. Dr. Hans-Walter Rix | Referat für Presse- und

Weitere Berichte zu: Astronom QUASAR Rotverschiebung SDSS

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

nachricht Rostock Scientists Achieve Breakthrough in Quantum Physics
18.09.2019 | Universität Rostock

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics