Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorstoß in unsichtbare Bereiche

11.04.2005


Die Terahertz-Strahlung liegt auf dem elektromagnetischen Spektrum zwischen den langwelligen Radio- und Mikrowellen und dem unsichtbaren Infrarotbereich, der sich direkt an die dem menschlichen Auge noch sichtbare Farbe Rot anschließt. Als Gegenstand der Forschung ist der Terahertz-Bereich sehr vielversprechend, doch fehlten bislang die entsprechenden Geräte zur einfachen Erzeugung der Strahlung. Im Forschungszentrum Rossendorf wurde deshalb kürzlich eine Terahertz-Strahlungsquelle entwickelt und zum Patent angemeldet, die mit Hilfe eines intelligenten Tricks alle Schwachstellen der bisher vorgestellten Lösungsansätze umgeht. Die Firma Gigaoptics GmbH in Konstanz übernimmt den Vertrieb der Strahlungsquelle.



Ein Terahertz entspricht einer Billion Schwingungen in der Sekunde. Es handelt sich um für den Menschen ungefährliche Wärmestrahlung in einem Frequenzbereich von 300 Gigahertz (GHz) bis 30 Terahertz (THz). Die Anwendungsmöglichkeiten der Strahlung in der medizinischen oder biologischen Analytik und in der Materialforschung stehen zwar erst am Anfang, werden aber dennoch als äußerst vielversprechend eingeschätzt. So könnten THz-Strahlen die Röntgenbehandlung beim Arzt zum Teil ersetzen, etwa bei der Kariesdiagnostik. Die Strahlen durchdringen Kleidung oder Gewebe quasi ohne Mühe und könnten so in Zukunft Blicke auf das Frühstadium von Karies oder Hautkrebs bzw. in das Innere von Zellen erlauben. Im Forschungszentrum Rossendorf wird die THz-Strahlung vor allem für die Untersuchung von Halbleiter-Materialien genutzt. Hierbei interessiert man sich besonders für die Dynamik der Elektronen, um damit die Grundlagen für komplexe Halbleiterstrukturen besser verstehen zu können und auf dieser Grundlage neue Bauelemente zu entwickeln.



Der Nachteil der Strahlung - sie lässt sich heute noch nicht einfach und günstig erzeugen. Hinzu kommt, dass die erzeugte Strahlung i. d. R. nicht intensiv genug ist für den Einsatz in der modernen Forschung. Man spricht daher regelrecht von einer Lücke, der Terahertz-Lücke. Weltweit arbeiten Forschergruppen daran, diese Lücke zu überwinden. Die Strahlungsquelle soll intensives "Licht" in einem breiten Frequenzbereich aussenden und gleichzeitig kostengünstig sein. Zwei verschiedene Ansätze werden derzeit verfolgt. Beim ersten Ansatz überlagern sich zwei Laser mit unterschiedlichen Frequenzen und sollen so in einem mit Elektroden präparierten Halbleiter kontinuierliche THz-Strahlung erzeugen. Der zweite Ansatz setzt auf superkurze Laserpulse, die ebenfalls auf einen Halbleiter gerichtet werden. Durch die Lichtpulse werden Elektronen im Halbleiter erzeugt, die im elektrischen Feld zwischen zwei auf dem Halbleiter angebrachten Elektroden beschleunigt werden und so THz-Strahlung aussenden.

Die Erfindung im Forschungszentrum Rossendorf geht auf diesen zweiten Ansatz zurück und verbessert die bisher vorhandenen Lösungsmöglichkeiten erheblich. Setzt man die Elektroden auf dem besonderen Halbleitermaterial Galliumarsenid nämlich weit voneinander entfernt (im Zentimeterbereich), um eine große aktive Fläche zur THz-Erzeugung zu erhalten, benötigt man eine Spannung im Kilovolt-Bereich. Damit wäre solch eine Strahlungsquelle für die Anwendung im Labor viel zu unpraktikabel. Setzt man die Elektroden dagegen nah (im Mikrometerbereich), hat man zwar einerseits die erforderliche elektrische Spannung im Griff, reduziert die aktive Fläche jedoch gleichzeitig so, dass die Intensität des erzeugten "Lichts" für die Anwendung nicht ausreichend ist.

Die Rossendorfer Physiker um Prof. Thomas Dekorsy (jetzt Universität Konstanz) und Dr. Stephan Winnerl hatten eine simple, aber äußerst wirkungsvolle Idee. Sie stellten eine Elektrodenstruktur auf der Galliumarsenid-Scheibe (Wafer) her, die fingerartig ineinander greift. Die Abstände der "Finger" betragen jeweils etwa 5 Mikrometer und die Struktur insgesamt hat derzeit eine aktive Fläche von etwa 1 cm2. Ohne einen zweiten technologischen Trick kommt es allerdings nicht zur Aussendung von THz-Strahlung, denn es geschieht zunächst Folgendes: das elektrische Feld wechselt von Zwischenraum zu Zwischenraum die Richtung, so dass die durch die Laserpulse im Halbleitermaterial erzeugten Elektronen in entgegengesetzte Richtungen beschleunigt werden und die ausgesandte Strahlung sich im Ergebnis durch die entstehenden Interferenzen wieder auslöscht. Hier greift nun der folgende Trick: jeder zweite "Finger" auf der Halbleiter-Scheibe wird nachträglich mit einer zweiten Maske zugedeckt. So wird jeder zweite Spalt inaktiv und die Interferenz der ausgesandten Strahlung ist im Ergebnis konstruktiv.

Dr. Stephan Winnerl erläutert: "Die von uns erzeugte Terahertz-Strahlung ist kohärent - eine Eigenschaft, die beispielsweise jedes Laserlicht auszeichnet - und deckt einen Frequenzbereich von 0,5 bis zu 3 Terahertz ab. Damit haben wir ein sehr sensitives Messgerät an der Hand, mit dem wir beispielsweise Schichtstrukturen von Halbleitern in ganz neuem Licht betrachten können. Halbleiter können, jeweils abhängig von bestimmten Strukturen und Schichten, komplexe elektronische Eigenschaften annehmen. Die Terahertz-Strahlung ist zur Untersuchung dieser Eigenschaften ideal geeignet."

Weitere Vorteile der Rossendorfer Erfindung liegen in der Skalierbarkeit der aktiven Fläche und in der Möglichkeit für den Anwender, den Strahldurchmesser für seine jeweiligen Forschungen flexibel einstellen zu können. Dies ist ein wichtiges Kriterium u. a. für die Nutzung der THz-Strahlung als bildgebendes Verfahren für bio-medizinische Fragestellungen. Die Erfindung ist zum Patent angemeldet und in der renommierten Fachzeitschrift Applied Physics Letters vor kurzem veröffentlicht worden (*). Die Konstanzer Firma Gigaoptics GmbH wird die THz-Strahlungsquelle vertreiben und erstmals auf der weltweit größten Fachmesse zur Optoelektronik im Mai in Baltimore, USA, einem internationalen Publikum vorstellen.

Ansprechpartner:
Dr. Stephan Winnerl
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3522; Email: s.winnerl@fz-rossendorf.de
(*) Artikel in: Applied Physics Letters 86, 121114 (2005).

Information:
Das Forschungszentrum Rossendorf (FZR) betreibt Grundlagen- und anwendungsorientierte Forschung mit Photonen- und Teilchenstrahlen, wobei
· die Erforschung der Materie auf der Skala von Nanometern,
· der Schutz von Mensch und Umwelt vor technischen Risiken und
· der Einsatz bei Tumor- und Stoffwechselerkrankungen
den Schwerpunkt bilden. Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten.

Das FZR ist mit ca. 550 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 56 Mill. Euro. Hinzu kommen etwa 6 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro (Stand 1.1.2005).

Pressekontakt:
Dr. Christine Bohnet
Tel.: 0351 260 - 2450 oder 0160 969 288 56; Fax: 0351 260 - 2700
c.bohnet@fz-rossendorf.de
Postanschrift: Postfach 51 01 19 . 01314 Dresden
Besucheranschrift: Bautzner Landstraße 128 . 01328 Dresden

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics