Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kurze Gammablitze - neue Modelle beleuchten rätselhafte Explosionen

03.09.2004


Phasen der Verschmelzung zweier Neutronensterne (von links oben nach rechts unten). Die Sterne heizen sich beim gegenseitigen Aufprall stark auf und es entsteht eine Wolke heißer Materie, die einen sehr viel dichteren, zentralen Überrest umgibt. Dieser kollabiert mit hoher Wahrscheinlichkeit zu einem schwarzen Loch. Die dargestellte Entwicklung dauert rund eine hundertstel Sekunde (Bild: Ruffert und Janka 2001).


Ausgeschleudertes Gas um das schwarze Loch-Torus System mehr als eine halbe Sekunde nach Beginn der Energiefreisetzung am schwarzen Loch. Die axialen Jets (helle, weisse Gebiete) haben Geschwindigkeiten von über 99.995 Prozent der Lichtgeschwindigkeit und erstrecken sich weiter als 150000 km. Diese hochrelativistischen Gasströme erzeugen bei noch größeren Abständen vom schwarzen Loch einen Gammablitz. Das seitlich abströmende Gas ist wesentlich energieärmer und langsamer, es erreicht nur Geschwindigkeiten von maximal 98 Prozent der Lichtgeschwindigkeit (rote Gebiete). Das untere Bild zeigt eine Vergrößerung der unmittelbaren Umgebung des zentralen schwarzen Lochs bis zu einem Radius von rund 400 km. Man sieht die Jetentstehung und den ausgedehnten Akkretionstorus, in dessen weisslichen Gebieten eine Gasdichte von mehr als 1000 Kilogramm pro Kubikzentimeter herrscht.


Neue relativistische Simulationen am Max-Planck-Institut für Astrophysik ermöglichen es, bislang unbekannte Eigenschaften kurzer Gammablitze vorherzusagen. Der Swift Gamma-Ray Burst Explorer, eine Satellitenmission der NASA, deren Start für den Herbst 2004 geplant ist, wird diese Modelle einer Prüfung unterziehen.

... mehr zu:
»ABB »Gammablitz »Gammastrahl

Gammablitze gehören zu den energiereichsten und hellsten Explosionen im Universum. Sie ereignen sich im Schnitt einmal am Tag, sind zwischen einer tausendstel Sekunde und mehrere hundert Sekunden lang, und werden in allen Himmelsrichtungen beobachtet. Ihre Gammastrahlung ist energiereicher als sichtbares Licht und kann von Satelliten im Weltraum gemessen werden. Gammablitze setzen in einer Sekunde eine Energiemenge frei, wie sie die Sonne in ihrer 10 Milliarden Jahre dauernden Entwicklung produziert.

Die mehr als 2700 aufgezeichneten Gammablitze können in zwei Gruppen eingeteilt werden. Die sog. langen Blitze emittieren Gammastrahlung für mehr als zwei Sekunden, während die kurzen Blitze unter zwei Sekunden strahlen.


Bislang konnten nur die langen Blitze genau beobachtet werden. Das bei ihnen gefundene "Nachglühen" in Röntgenstrahlung, sichtbarem Licht und Radiostrahlung hat es erlaubt, ihre Entfernung zu bestimmen. Es hat sich bestätigt, dass sie meist aus Milliarden von Lichtjahren entfernten Galaxien stammen. Bis vor kurzem waren die Quellen dieser Strahlung vollkommen unbekannt. Durch die genauere Beobachtung häuften sich allerdings Hinweise, dass sie bei gewaltigen Explosionen sehr schwerer Sterne erzeugt werden. Eine endgültige Bestätigung dieser Vermutung gelang mit dem Gammablitz vom 29. März 2003, GRB030329, der vom High-Energy Transient Explorer Satelliten HETE aufgezeichnet wurde. Erstmals konnte dieser Blitz zweifelsfrei mit der außergewöhnlichen Supernova SN 2003dh in zwei Milliarden Lichtjahre Entfernung in Verbindung gebracht werden.

Wo aber kommt die gewaltige Energie her, die in den Gammablitzen frei wird? Die am weitesten verbreitete Theorie besagt, dass die "Maschine" ein rotierendes schwarzes Loch ist, das sich bildet, wenn der zentrale Kern eines sterbenden Sterns instabil wird und unter seiner eigenen Schwerkraft in sich zusammenstürzt. Dieses neu entstandene schwarze Loch verschlingt nun den größten Teil der kollabierenden Sternmaterie und setzt andererseits riesige Energiemengen in Form zweier "Jets" frei. Diese Gasströme expandieren mit nahezu Lichtgeschwindigkeit in Richtung der Rotationsachse des Sterns. Bevor sie aus der Sternoberfläche ausbrechen, müssen sie sich ihren Weg durch dicke Schichten von Sternmaterie bahnen und werden dabei in sehr enge Strahlen gebündelt (siehe Aktuelle Forschung -- März 2000). Tatsächlich bestätigen Beobachtungen nicht nur den Ursprung langer Gammablitze von explodierenden Sternen, sondern liefern auch Hinweise darauf, dass die Gammastrahlung von eng gebündelten, hochrelativistischen Jets (mit Geschwindigkeiten von über 99,995 Prozent der Lichtgeschwindigkeit) stammt.

Rotierende, stellare schwarze Löcher entstehen aber auch bei anderen kosmischen Ereignissen, z.B. bei der Verschmelzung zweier Neutronensterne (Abb. 1) oder eines Neutronensterns mit einem schwarzen Loch. Solche kompakten Objekte umkreisen sich in Doppelsternsystemen Hunderte Millionen Jahre, wobei ihr Bahnabstand durch Gravitationswellen-Abstrahlung fortwährend schrumpft. Nach der unausweichlichen, finalen Katastrophe bleibt für Sekundenbruchteile ein dicker Ring heißer Materie um das schwarze Loch (Abb. 2). Schon seit langem argumentieren Theoretiker, dass Gammablitze ausgelöst werden könnten, wenn diese Materie im schwarzen Loch verschwindet. Verschmelzende kompakte Sterne gelten als heiße Kandidaten für die Herkunft der immer noch mysteriösen kurzen Gammablitze.

Wissenschaftler vom Max-Planck-Institut für Astrophysik haben nun mit genaueren Modellen untersucht, wie die hochrelativistischen polaren Jets durch Energiefreisetzung (z.B. durch Elementarteilchenprozesse) in unmittelbarer Nähe eines schwarzen Lochs entstehen. Die Computersimulationen berücksichtigen die Effekte von Einsteins Allgemeiner Relativitätstheorie. Sie bestätigen, dass kurze Blitze Eigenschaften besitzen sollten, die sich charakteristisch von denen langer Blitze unterscheiden. Weil das schwarze Loch nicht im Zentrum eines Sterns entsteht, müssen die Jets nicht ihren Weg durch dichte Sternschichten nach außen bahnen. Sie erreichen daher sehr schnell extrem hohe Geschwindigkeiten und werden dabei durch die dicke Gasscheibe um das Schwarze Loch in enge Strahlen gebündelt (Abb. 3). Sie besitzen Öffnungswinkel zwischen 5 und 10 Grad und sind nur wenig weiter als die Gammajets aus sterbenden Sternen. Die Modelle sagen vorher, dass außerhalb dieser polaren Kegel nur sehr schwache Gammastrahlung emittiert wird (Abb. 4). Von rund 100 Doppelsternverschmelzungen sollte deshalb nur einer einen beobachtbaren Gammablitz verursachen, wenn einer der Jets genau auf die Erde gerichtet ist. Kurze Gammablitze können fast genauso hell sein wie lange Blitze, obwohl ihre Energie 100 mal geringer ist.

Bislang war es nicht möglich, mit Satelliten detaillierte Messungen an kurzen Gammablitzen vorzunehmen. Es besteht aber Hoffnung, dass die Modellvorhersagen bald überprüft werden können. Im Herbst 2004 wird ein neues Instrument in den Erdorbit geschossen, der Swift Gamma-Ray Burst Explorer, den die NASA mit internationaler Beteiligung betreiben wird. Eines seiner Hauptziele ist es, endlich die Geheimnisse der kurzen Gammablitze zu lüften.



| Max-Planck-Gesellschaft

Weitere Berichte zu: ABB Gammablitz Gammastrahl

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Extrem klein und schnell: Laser zündet heißes Plasma
18.09.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Schaltung des Stromflusses auf atomarer Skala
17.09.2018 | Universität Augsburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics