Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Gas und Staub sich zu neuen Sternen zusammenballen

19.09.2003


Der Raum zwischen den Sternen ist keineswegs leer. Er enthält Gas und Staub, allerdings unter extremen Bedingungen: Die Temperaturen liegen mit weniger als minus 260 Grad Celsius nur knapp über dem Absoluten Nullpunkt, die Dichte ist unvorstellbar gering - ein Vakuum, das sich auf der Erde nicht verwirklichen lässt.


Prof. Daniel Zajfman, The Weizmann Institute of Science, Rehovot, Israel, ist Träger des erstmals in diesem Jahr von der Minerva-Stiftung verliehenen "Minerva Award".

Foto: The Weizmann Institute of Science, Rehovot, Israel



Dennoch entstehen aus dieser interstellaren ("zwischen den Sternen" vorkommenden) Materie auch heute noch neue Sterne. Um solche Vorgänge zu enträtseln, haben Wissenschaftler die Astrophysik ins Labor geholt. Über dieses faszinierende Thema berichtet der Preisträger des erstmals in diesem Jahr verliehenen "Minerva Award", Prof. Daniel Zajfman, The Weizmann Institute of Science, Rehovot, Israel, in einem Öffentlichen Vortrag (in englischer Sprache) am 23. September 2003, um 19.00 Uhr, in der Alten Universität Heidelberg.

... mehr zu:
»Materie »Molekül »Strahlung »Weltraum


Wichtigstes Instrument bei den Untersuchungen Zajfmans ist der Test Storage Ring (TSR) des Max-Planck-Instituts für Kernphysik in Heidelberg. Damit lassen sich ultrakalte Molekülsorten wie sie im Weltraum vorkommen, herstellen. Und so die grundlegenden physikalischen und chemischen Prozesse untersuchen, die schließlich dazu führen, dass neue Sonnen erstrahlen - aber auch neue Planetensysteme entstehen.

Seit über zwölf Jahren arbeitet Prof. Daniel Zajfman - er wurde 1959 in Belgien geboren und ist 1979 nach Israel ausgewandert - mit Prof. Dirk Schwalm und Prof. Andreas Wolf am Max-Planck-Institut für Kernphysik zusammen. Mehr als 60 wissenschaftliche Arbeiten über Forschungsergebnisse aus Deutschland stammender Studenten am Weizmann-Institut und ihrer Kollegen aus Israel am Heidelberger Max-Planck-Institut sind inzwischen über das Thema veröffentlicht worden.

Ein extrem schwieriges Unterfangen: Versucht man doch in Labors auf der Erde die kosmischen Zustände und Wechselwirkungen zu verstehen, die Tausende von Lichtjahren entfernt stattfinden und das Geschehen in der interstellaren Materie bestimmen.

Die interstellare Materie besteht im wesentlichen aus Gas, also frei umher schwirrenden Atomen und Molekülen, aber auch aus festen, mikroskopischen Partikeln, dem kosmischen Staub. Im Weltall sind diese Bestandteile unterschiedlich dünn verteilt; im interstellaren Gas kommt durchschnittlich nur ein einziges Atom pro Kubikzentimeter Raum vor.

Dass in der Eiseskälte des Alls unter extrem geringem Druck sich Atome begegnen und zu Molekülen zusammenschließen können, galt lange Zeit als äußerst unwahrscheinlich. Erst als die technische Entwicklung immer feinere Analysen der Strahlung aus dem Weltraum möglich gemacht hat, zeigte sich: "Zwischen den Sternen gibt es mehr unterschiedlich aufgebaute Moleküle als in den Sternen selbst", bestätigt Prof. Zajfman. Mehrere Dutzend solcher Weltraummoleküle sind inzwischen anhand ihrer "spektralen Fingerabdrücke" gefunden worden.

Moleküle sind mehr oder weniger zerbrechliche Atomverbände. Im Weltraum sind sie harten Belastungen ausgesetzt, beispielsweise durch Schockwellen oder energieintensive Strahlung. Wenn sie von Lichtteilchen oder anderen Molekülen getroffen werden, beginnen sie unterschiedlich schnell zu rotieren und zu schwingen und wirken dann wie kleine Sendeantennen. Sie strahlen dabei elektromagnetische Wellen ab, die wegen der niedrigen Temperaturen in den "galaktischen Kühlschränken" vor allem im energiearmen Radio- und Infrarot-Bereich mit Teleskopen auf der Erde nachgewiesen werden können. Dabei liefern die Spektrallinien solcher Moleküle nicht nur Informationen über die chemische Zusammensetzung der interstellaren Materie, sondern auch über wichtige physikalische Eigenschaften wie Temperatur, Dichte, Bewegungen oder magnetische Felder.

Im nahezu leeren Weltraum geschieht es nur äußerst selten, dass freie Atome zufällig zusammenstoßen und sich zu Molekülen vereinen. Wesentlich besser stehen die Chancen, wenn einer der Partner elektrisch geladen ist und somit seine Anziehungskraft wächst. Er braucht nur ein Elektron zu verlieren, etwa durch den "Beschuss" mit intensiver kosmischer Strahlung: Neutrale Atome werden so zu elektrisch geladenen Ionen, ebenso wie Moleküle, sofern sie nicht völlig zerschlagen werden, zu chemisch aggressiven "Radikalen". Welche Rolle allerdings die kosmischen Staubteilchen spielen, ist bislang weitgehend unbekannt. Zwischen diesen Teilnehmern findet die "kalte, interstellare Chemie" statt - dies ist das Arbeitsgebiet von Prof. Zajfman.

Prof. Zajfman ist weltweit anerkannter Spezialist für elektrisch geladene Moleküle, besonders von Wasserstoff, einfachen Kohlenwasserstoff-Verbindungen und ionisiertem Sauerstoff. Damit versucht Prof. Zajfman die grundlegenden physikalischen Kräfte besser zu verstehen, die dafür verantwortlich sind, dass im interstellaren Raum Moleküle entstehen, erhalten bleiben oder zu Bruchstücken zerfallen. Für solche atomare Basisdaten, die auch auf der Erde etwa für die Chemie von entscheidender Bedeutung sind, gibt es bisher vor allem aus der Theorie abgeleitete Näherungsberechnungen, doch kaum exakte Messungen, schon gar nicht unter den "exotischen" Bedingungen der interstellaren Materie.

Am Test Storage Ring des Heidelberger Max-Planck-Instituts für Kernphysik ist es dem deutsch-israelischen Forscherteam nun gelungen, einige Prozesswege aufzuklären, über die Moleküle im interstellaren Raum entstehen oder in einzelne Atome zerbrechen und welche Energien dabei freigesetzt werden. Das hat auch den Vergleich der von weit entfernten Weltraummolekülen ausgesendeten Spektren mit den im Labor gewonnenen Daten wesentlich verbessert und neue allgemeine Erkenntnisse über die interstellare Materie gebracht.

Bei seinen Forschungsarbeiten hat Prof. Zajfman außerdem ein naheliegendes Gebiet für seine Untersuchungen entdeckt. Den in Höhen zwischen 80 und 480 Kilometern über der Erdoberfläche Ionosphäre genannten Teil der Lufthülle. Intensive Strahlung von der Sonne trifft auch hier auf häufig vorkommende Moleküle, die dadurch ionisiert werden, also Elektronen einfangen oder verlieren. "Chemische Reaktionen, die in der Ionosphäre stattfinden, beeinflussen die gesamte Atmosphäre", sagt Prof. Zajfman. "Daraus folgt, dass sie auch unser Überleben auf dem Planeten beeinflussen."

Mit einer neuartigen, so genannten Ionenstrahlfalle hat Prof. Zajfman unterdessen ein weiteres Instrument für seine Untersuchungen entwickelt. Damit lassen sich, ähnlich wie im Heidelberger Test Storage Ring, mit Hilfe elektrostatischer Felder "Wolken" aus ionisierten Molekülen speichern - in einer mit nur 50 Zentimetern Länge ungewöhnlich kompakten Anlage. Darin pendeln die Ionen zwischen zwei "Spiegeln" hin und her, ehe sie auf ein Ziel losgelassen und die Reaktionsprodukte identifiziert und gemessen werden können.

Weil in den Zajfmanschen Ionenstrahlfallen auch größere Teilchen unabhängig von ihrer Masse eingeschlossen werden können, haben völlig unerwartet inzwischen auch andere Forschungsgruppen diese Technik übernommen: Zum Beispiel Biologen für Experimente mit langgestreckten Molekülen wie der DNA oder sogar ganzen Viren.

Prof. Zajfmans Forschungsergebnisse stellen einen wichtigen Beitrag dar, die fundamentalen Vorgänge aufzuspüren, durch die sich die interstellare Materie in manchen Regionen des Weltalls so stark zusammenballt, dass unter der Wirkung der Schwerkraft die Temperaturen gewaltig ansteigen und schließlich die nukleare Kernverschmelzung beginnt: Ein neuer Stern ist geboren. Ähnlich sind so vor schätzungsweise sechs Milliarden Jahren auch unsere Sonne und ihre Planeten einschließlich der Erde entstanden.

Weitere Informationen erhalten Sie von:

Prof. Dirk Schwalm
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: 06221 516 - 360
Fax.: 06221 516 - 602
E-Mail: schwalm@mpi-hd.mpg.de

Prof. Dirk Schwalm | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Berichte zu: Materie Molekül Strahlung Weltraum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics