Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Staubscheibe um sehr jungen Stern entdeckt

26.01.2001


Faszinierende Aufnahmen von der Umgebung eines sehr jungen Sterns hat eine internationale Gruppe von Astrophysikern mit dem Hubble-Weltraumteleskop und mit Messsystemen zweier Sternwarten in Chile gemacht. Erstmals wiesen die Wissenschaftler jetzt zweifelsfrei nach, dass der relativ erdnahe Stern mit der Kennziffer HD 100546 eine Staubscheibe besitzt, aus der sich wahrscheinlich junge Planeten bilden.

Prof. Dr. Thomas Henning (Universität Jena), der gemeinsam mit Dr. Bringfried Stecklum (Thüringer Landessternwarte Tautenburg) als einziger europäischer Astrophysiker an diesen Arbeiten beteiligt ist, vermutet in HD 100546 einen sehr viel jüngeren, aber erheblich massereicheren "Bruder" unserer Sonne. Er erwartet deshalb aus dessen Beobachtung bahnbrechende Erkenntnisse über die Entstehung unseres Sonnensystems und des Planeten Erde.

Henning: "Bereits jetzt gibt es wichtige Anhaltspunkte dafür, dass unsere Theorie der Planetenentstehung richtig ist." Demnach verdichten sich im Weltall frei schwebende Teilchen und Gase im Laufe von Jahrmillionen zu einer Wolke, die schließlich zu einem Sternengebilde mit einer Rotationsscheibe - Astronomen sprechen auch von Akkretionsscheibe - aus kleinen Partikeln zusammensinkt. Die internationale Forschergruppe koordinierte Carol A. Grady von den US-amerikanischen National Optical Astronomy Observatories und dem Goddard Space Flight Center. Die Arbeiten von Henning und Stecklum wurden u. a. durch die Deutsche Forschungsgemeinschaft gefördert.

Eine solche Rotationsscheibe haben die Wissenschaftler nun bei dem erst zehn Millionen Jahre alten HD 100546 im Sternbild Musca am Südhimmel entdeckt. Sie hat einen Radius von rund 52 Milliarden Kilometern und ist noch von Resten der ursprünglichen Partikelwolke umgeben. "Wir gehen davon aus, dass die Teilchen in der Staubscheibe miteinander verklumpen, schließlich eigene Körper bilden und später als Planeten ihre neue Sonne umkreisen", erläutert Thomas Henning. "Genau so muss auch unsere Erde vor 4,6 Milliarden Jahren entstanden sein."

Größere Körper im Einzugsgebiet von HD 100546 haben die Wissenschaftler noch nicht selbst nachgewiesen. "Es wurden aber bereits Spektrallinien von größeren Materialklumpen gefunden, die aus der Rotationsscheibe in den Zentralstern stürzen", so Henning. Für ihn ist es nur eine Frage der Zeit, bis auch Planeten - oder zumindest ihre Umlaufbahnen - um diesen oder ähnliche junge Sterne entdeckt werden.
Zwar lässt sich HD 100546 viel besser beobachten als andere Sternentstehungsgebiete, weil er mit etwa 335 Lichtjahren, also rund drei Billiarden Kilometern, zu den der Erde nächstgelegenen jungen Sternen gehört.

Probleme bereitet den Wissenschaftlern aber die enorme Leuchtkraft des Sterns im Vergleich zur lichtschwachen Rotationsscheibe. "Mit herkömmlichen Beobachtungstechniken ist da in der näheren Umgebung absolut nichts zu erkennen", erklärt Henning, "so wie wir ja auch mit bloßem Auge nicht die Korona unserer Sonne sehen können." Deshalb ließen die Astrophysiker auf dem Weltraumteleskop Hubble ein Spezialsystem installieren und können mit Hilfe dieses Space Telescope Imaging Spectrograph (STIS) den hellen Zentralbereich des Sternsystems buchstäblich ausblenden; sie erzielen also bei der Beobachtung einen Effekt, wie ihn der astronomische Laie bei der letzten Sonnenfinsternis beobachten konnte.

Noch komplizierter ist die Arbeit mit den erdgestützten Observatorien, so der Europäischen Südsternwarte in Chile. Denn hier müssen zudem noch die verfälschenden Effekte, die durch die Erdatmosphäre entstehen, aus den Daten herausgefiltert werden. Dazu setzen die Wissenschaftler eine so genannte adaptive Optik ein. Diese Techniken werden derzeit noch weiter verbessert und die neuen Teleskope der 10m-Klasse auf dem chilenischen Berg Paranal in der Atacama-Wüste vorbereitet, "so dass wir in den kommenden Jahren die Staubscheibe von HD 100546 noch viel genauer analysieren können", so Prof. Henning.

Als ersten Lohn ihres Erfolgs erhielt die Forschergruppe weitere Beobachtungszeit für das Weltraumteleskop Hubble eingeräumt. "Damit können wir außerdem zehn andere sehr junge Sterne beobachten", freut sich Henning.

Ansprechpartner:


Prof. Dr. Thomas Henning
Astrophysikalisches Institut und Universitätssternwarte
der Friedrich-Schiller-Universität Jena

Tel.: 03641/947530, Fax: 947532
E-Mail: henning@astro.uni-jena.de


Friedrich-Schiller-Universität
Dr. Wolfgang Hirsch
Referat Öffentlichkeitsarbeit
Fürstengraben 1
D-07743 Jena
Telefon: 03641 · 931030
Telefax: 03641 · 931032
E-Mail: roe@uni-jena.de

Weitere Informationen finden Sie im WWW:

Dr. Wolfgang Hirsch | idw

Weitere Berichte zu: Beobachtung Rotationsscheibe Staubscheibe

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zwei erdähnliche Planeten um einen der kleinsten Sterne – und die Möglichkeit, von dort aus die Erde nachzuweisen
18.06.2019 | Max-Planck-Institut für Astronomie

nachricht Stabilität und Mobilität: Zwei Flüssigkeiten sind der Schlüssel
17.06.2019 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

18.06.2019 | Maschinenbau

Zwei erdähnliche Planeten um einen der kleinsten Sterne – und die Möglichkeit, von dort aus die Erde nachzuweisen

18.06.2019 | Physik Astronomie

Neues aus der Kinderstube der Diamanten

18.06.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics