Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Dreh mit dem Wirbel

10.06.2008
Wie die renommierten US-Fachzeitschriften "Physical Review Letters" und "Science" (Online-Ausgabe vom 23. Mai 2008) berichten, gelang es Forschern der Universität Hamburg, mit Hilfe von zeitauflösender Röntgen-Mikroskopie, die Dynamik der Magnetisierung von kleinen ferromagnetischen Elementen, die durch Spinströme zum Schwingen angeregt wurden, zu beobachten.

Diese Forschungsergebnisse erweitern das benötigte grundlegende Verständnis für den Einsatz in neuartigen magnetischen Speichermedien.

Magnetische Festplattenspeicher sind heutzutage in fast jedem Haushalt vorhanden und finden sogar in Videokameras, Harddisk-Video-Rekordern und Set-Top-Boxen Gebrauch. Das jahrzehntelange Wachstum der Speicherdichte auf heute über eine Milliarde Bits pro Quadratmillimeter droht in den nächsten Jahren an das Limit zu stoßen; die kleinsten magnetischen Bits sind nämlich bei Raumtemperaturen nicht mehr stabil, sondern verlieren ihr "Gedächtnis".

Aus diesem Grund machen sich bereits jetzt Forscher in aller Welt Gedanken über mögliche Nachfolger zu herkömmlichen Datenspeichermethoden. Als erfolgversprechende Alternative sind Konzepte im Gespräch, in denen Festkörperspeicher mit Hilfe von Spinströmen ausgelesen oder geschrieben werden. Spinströme nutzen eine weitere, bisher weitgehend unbeachtete Größe von Elektronen: Ihr Eigendrehmoment oder Spin.

... mehr zu:
»Magnetisierung »Spinströme

Mithilfe von Spinströmen lässt sich die Magnetisierung sehr kleiner Strukturen punktgenau auslesen und auch verändern, indem die Elektronen ihre Spinausrichtung auf die Magnetisierung übertragen. Dieser Prozess wird "Spin-Transfer" genannt. Für die Entdeckung eines verwandten Mechanismus, den sogenannten Riesenmagnetowiderstand, erhielten Peter Grünberg und Albert Fert letztes Jahr den Physiknobelpreis. Durch das punktgenaue Lesen und Schreiben mit dem Spin-Transfer-Effekt lassen sich in Zukunft eventuell noch kleinere magnetische Bits schalten als bisher.

Den Einfluss von Spinströmen auf die Magnetisierung haben Dr. Markus Bolte und Mitarbeiter des Instituts für Angewandte Physik der Universität Hamburg nun in Zusammenarbeit mit dem I. Institut für Theoretische Physik der Universität Hamburg, dem Max-Planck-Institut für Metallforschung in Stuttgart, der Universität Ghent in Belgien und der Lawrence Berkeley Laboratories in Berkeley, Kalifornien untersucht. Zum ersten Mal konnten sie mit einer zeitlichen Auflösung von weniger als einer Milliardstel Sekunde die Wechselwirkung zwischen Spinströmen und Magnetisierung verfolgen.

Als ultraschnelle "Kamera" wurde dabei das Röntgen-Licht eines Elektronensynchrotrons verwendet. In einem solchen Synchrotron entsteht das Röntgen-Licht, indem Elektronenpakete, die mit Lichtgeschwindigkeit um den Ring fliegen, abgelenkt werden. Das Licht wird dann durch spezielle Linsen auf die magnetischen Strukturen geschickt. Eine besonders schnelle lichtempfindliche Diode misst jedes einzelne Röntgen-Lichtquant und wandelt es in elektrische Signale um. In den untersuchten magnetischen Quadraten bildet sich natürlicherweise eine magnetische Singularität, ein sogenannter Vortex aus, bei dem die Magnetisierung aus der Ebene zeigt. Da der Vortex nur eine von zwei Richtungen annehmen kann, werden Vortizes als mögliche nichtflüchtige Speichermedien gehandelt. Die Vortizes können durch hochfrequente Wechselströme zum Schwingen und zum Umklappen gebracht werden.

Herr Bolte beschreibt die Ergebnisse der Messungen: "Dank der hervorragenden zeitlichen und örtlichen Auflösung des Mikroskops konnten wir die Bewegung des Vortizes extrem genau verfolgen." Er sagt weiter: "Wir konnten zeigen, dass nicht nur der Elektronenspin auf die Magnete wirkt, sondern auch das Magnetfeld, das jeden elektrischen Strom umgibt. Mit unserer Messmethode konnten wir bestehende Vorhersagen über die Wechselwirkung zwischen Spinströmen und Ferromagneten erweitern und besser quantifizieren." Diese Entdeckung hat Auswirkungen auf die mögliche Realisierbarkeit solcher nichtflüchtiger Datenspeicher. Die Forschergruppe arbeitet bereits an konkreten Umsetzungsmöglichkeiten. In Zusammenarbeit mit dem Arbeitsbereich TIS des Departments für Informatik entwickeln sie Modelle, die es ihnen erlauben, das Verhalten solcher Strukturen in komplexen Elektronikschaltkreisen vorherzusagen.

Originale Veröffentlichung:

"Time-Resolved X-ray Microscopy of Spin-Torque-Induced Magnetic Vortex Gyration"
M. Bolte, G. Meier, A. Drews, R. Eiselt, L. Bocklage, B. Krüger, S. Bohlens, T. Tyliszczak, A. Vansteenkiste, B. Van Waeyenberge, K. W. Chou, A. Puzic, and H. Stoll
Physical Review Letters 100, 176601 (2008)
doi:10.1103/PhysRevLett.100.176601

Heiko Fuchs | idw
Weitere Informationen:
http://link.aps.org/abstract/PRL/v100/e176601
http://www.sciencemag.org/content/vol320/issue5879/twil.dtl#320/5879/987b
http://www.sfb668.de

Weitere Berichte zu: Magnetisierung Spinströme

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren
17.10.2018 | Forschungsverbund Berlin e.V.

nachricht Reise zum Merkur mit Berner Beteiligung
17.10.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sinneswahrnehmung ist keine Einbahnstraße

17.10.2018 | Biowissenschaften Chemie

Space Farming dank Pflanzenhormon Strigolacton

17.10.2018 | Agrar- Forstwissenschaften

Oberflächen mit flexiblen und handlichen Plasmaquellen aktivieren

17.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics