Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individualismus aus Selbsterhaltungstrieb

06.06.2008
MPQ-Forscher decken strukturgebende Mechanismen in kalten molekularen Gasen auf.

Ultrakalte Quantengase aus stark korrelierten Teilchen sind wichtige Modelle für das Verständnis von Festkörpereigenschaften. Die Korrelationen zwischen Teilchen entstehen dabei gewöhnlich durch eine elastische Wechselwirkung der Teilchen untereinander. Forscher am Max-Planck-Institut für Quantenoptik aus der Abteilung Quantendynamik (Leitung: Prof. Gerhard Rempe) sowie der Abteilung Theorie (Leitung: Prof. Ignacio Cirac); unter Mitarbeit des spanischen Physikers J. García-Ripoll von der Universidad Complutense de Madrid; haben nun gezeigt, dass sich solche starken Korrelationen auch durch eine unelastische Wechselwirkung erzeugen lassen.


Kalte Moleküle (blau) werden in einem periodischen Potential festgehalten. Wird das Potential entfernt, so würden die Moleküle sich normalerweise frei bewegen. Liegt allerdings eine starke unelastische Wechselwirkung zwischen den Molekülen vor, so bleiben die Moleküle in ihrem Anfangszustand eingefroren. MPQ

Überdies unterdrücken diese Korrelationen die Verlustmechanismen, die normalerweise durch die unelastische Wechselwirkung entstehen würden (Science, 6. Juni 2008), indem sie die Teilchen voneinander ferngehalten: Moleküle, die sich in einem ellblechförmigen, optischen Gitter eigentlich in einer Richtung frei bewegen könnten, bleiben periodisch aufgereiht sitzen, um verlustbringenden Stößen zu entgehen. Das Experiment könnte den Weg weisen für das Arbeiten mit andersartigen Quantensystemen, in denen ebenfalls starke Korrelationen aufgrund unelastischer Wechselwirkungen erwartet werden dürfen.

Makroskopische Eigenschaften wie Magnetismus oder Hochtemperatursupraleitung sind das Resultat eines komplexen Zusammenspiels vieler Teilchen, die stark korreliert sind, das heißt sich in ihrem Verhalten gegenseitig stark beeinflussen. Dabei spielt eine entscheidende Rolle, ob es sich bei den Teilchen um Fermionen oder Bosonen handelt: Bosonen nehmen bei sehr tiefen Temperaturen am liebsten alle ein und denselben Zustand ein.

... mehr zu:
»Bosonen »Molekül

Im Extremfall bilden sie ein Bose-Einstein-Kondensat, in dem etwa 100 000 Teilchen zu einem Riesenatom verschmelzen und sich das einzelne Atom nicht mehr von den anderen in seinen Quanteneigenschaften unterscheidet. Fermionen in einem abgeschlossenen System müssen sich dagegen jeweils in mindestes einer Quantenzahl voneinander unterscheiden, wodurch sie zwangsläufig miteinander stark korreliert sind.

In dem hier beschriebenen Experiment jedoch legen eigentlich bosonische Moleküle genau das Verhalten von Fermionen an den Tag, und dieser Individualismus rettet sie vor gegenseitiger Zerstörung. Die Physiker beginnen mit der Erzeugung eines Bose-Einstein-Kondensates aus Rubidiumatomen (die zu den Bosonen zählen) und füllen dies in ein dreidimensionales "optisches Gitter". Das ist eine Art Kristall aus Licht, das durch Überlagerung von stehenden Lichtwellen aus allen drei Raumrichtungen erzeugt wird. Das resultierende Laserlichtfeld ähnelt in seiner Form einem Stapel von Eierkartons, in dessen einzelnen Mulden sich die Atome niederlassen. Jeder dieser Gitterplätze wird mit genau zwei Atomen belegt. Anschließend wird durch Anlegen eines Magnetfeldes eine so genannte Feshbach-Resonanz adressiert, wodurch sich die zuvor ungebundenen Atompaare in den Mulden zu fragilen Molekülen chemisch verbinden. Die Tiefe der Mulde ist hier zunächst so gewählt, dass die Moleküle in der Mulde gefangen sind und nicht auf Nachbarplätze abwandern können.

Was aber passiert, wenn das optische Gitter direkt im Anschluss daran so verändert wird, dass es die Form eines Stapels von Wellblechen annimmt? Eine solche Transformation der Gittergeometrie lässt sich anhand der eingestrahlten Laserleistung gezielt realisieren. Die Moleküle befinden sich nun perlenkettenförmig aufgereiht in einer Art Rinne und haben prinzipiell die Möglichkeit, sich entlang der Rinne zu bewegen. Intuitiv könnte man also erwarten, dass die Moleküle dann mit ihren Nachbarn zusammenstoßen und aufgrund ihrer fragilen Bauart dabei zerstört werden. Eine rapide Abnahme der Anzahl der Moleküle wäre die Folge.

Erstaunlicherweise zeigt sich jedoch im Experiment, dass sich die Teilchen nicht vom Fleck rühren und nicht miteinander kollidieren. Warum das so ist, erklärt Dominik Bauer, Doktorand am Experiment: "Eigentlich kann man sich die Moleküle wie fragile Seifenblasen vorstellen. Wenn sie sich entlang der Rinne zu nahe kämen und mit einem Nachbarn zusammenstießen, würden beide zerfallen. Da die Moleküle aber von der Quantenmechanik beherrscht werden, tun sie dies nicht. Stattdessen halten sie von vornherein Abstand voneinander. Obwohl sie Bosonen sind, zeigen sie somit ein Verhalten, dass man so eigentlich nur von Fermionen kennt. Im Fachjargon gesprochen: das molekulare, bosonische Gas ist fermionisiert."

Die Ergebnisse dieses Experiments zeigen Möglichkeiten auf, starke Korrelationen in Quantensystemen zu realisieren, die aufgrund der heftigen Wechselwirkung der Teilchen eigentlich unter hohen Verlusten leiden würden. In solchen Systemen sollten sich daher - so hofft man - Rahmenbedingungen schaffen lassen, die Verluste so weit reduzieren, dass Experimente innerhalb vernünftiger Zeitspannen durchzuführen sind. Aufgrund der allgemeinen Natur der im Experiment aufgedeckten Mechanismen könnten sich damit nicht nur für die Physik kalter Gase, sondern auch für ein viel breiteres Spektrum der Naturwissenschaften neue Perspektiven eröffnen. [O. M.]

Originalveröffentlichung:
N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J. Garcia-Ripoll, J. I. Cirac, G. Rempe, S. Dürr
"Strong Dissipation Inhibits Losses and induces Correlations in Cold Molecular Gases"

Science, 6. Juni 2008

Kontakt:

Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Prof. Dr. Ignacio Cirac
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 736
Fax: +49 - 89 / 32905 - 336
E-Mail: ignacio.cirac@mpq.mpg.de
Dipl. phys. Dominik Bauer
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 377
Fax: +49 - 89 / 32905 - 311
E-Mail: dominik.bauer@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Bosonen Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics