Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Individualismus aus Selbsterhaltungstrieb

06.06.2008
MPQ-Forscher decken strukturgebende Mechanismen in kalten molekularen Gasen auf.

Ultrakalte Quantengase aus stark korrelierten Teilchen sind wichtige Modelle für das Verständnis von Festkörpereigenschaften. Die Korrelationen zwischen Teilchen entstehen dabei gewöhnlich durch eine elastische Wechselwirkung der Teilchen untereinander. Forscher am Max-Planck-Institut für Quantenoptik aus der Abteilung Quantendynamik (Leitung: Prof. Gerhard Rempe) sowie der Abteilung Theorie (Leitung: Prof. Ignacio Cirac); unter Mitarbeit des spanischen Physikers J. García-Ripoll von der Universidad Complutense de Madrid; haben nun gezeigt, dass sich solche starken Korrelationen auch durch eine unelastische Wechselwirkung erzeugen lassen.


Kalte Moleküle (blau) werden in einem periodischen Potential festgehalten. Wird das Potential entfernt, so würden die Moleküle sich normalerweise frei bewegen. Liegt allerdings eine starke unelastische Wechselwirkung zwischen den Molekülen vor, so bleiben die Moleküle in ihrem Anfangszustand eingefroren. MPQ

Überdies unterdrücken diese Korrelationen die Verlustmechanismen, die normalerweise durch die unelastische Wechselwirkung entstehen würden (Science, 6. Juni 2008), indem sie die Teilchen voneinander ferngehalten: Moleküle, die sich in einem ellblechförmigen, optischen Gitter eigentlich in einer Richtung frei bewegen könnten, bleiben periodisch aufgereiht sitzen, um verlustbringenden Stößen zu entgehen. Das Experiment könnte den Weg weisen für das Arbeiten mit andersartigen Quantensystemen, in denen ebenfalls starke Korrelationen aufgrund unelastischer Wechselwirkungen erwartet werden dürfen.

Makroskopische Eigenschaften wie Magnetismus oder Hochtemperatursupraleitung sind das Resultat eines komplexen Zusammenspiels vieler Teilchen, die stark korreliert sind, das heißt sich in ihrem Verhalten gegenseitig stark beeinflussen. Dabei spielt eine entscheidende Rolle, ob es sich bei den Teilchen um Fermionen oder Bosonen handelt: Bosonen nehmen bei sehr tiefen Temperaturen am liebsten alle ein und denselben Zustand ein.

... mehr zu:
»Bosonen »Molekül

Im Extremfall bilden sie ein Bose-Einstein-Kondensat, in dem etwa 100 000 Teilchen zu einem Riesenatom verschmelzen und sich das einzelne Atom nicht mehr von den anderen in seinen Quanteneigenschaften unterscheidet. Fermionen in einem abgeschlossenen System müssen sich dagegen jeweils in mindestes einer Quantenzahl voneinander unterscheiden, wodurch sie zwangsläufig miteinander stark korreliert sind.

In dem hier beschriebenen Experiment jedoch legen eigentlich bosonische Moleküle genau das Verhalten von Fermionen an den Tag, und dieser Individualismus rettet sie vor gegenseitiger Zerstörung. Die Physiker beginnen mit der Erzeugung eines Bose-Einstein-Kondensates aus Rubidiumatomen (die zu den Bosonen zählen) und füllen dies in ein dreidimensionales "optisches Gitter". Das ist eine Art Kristall aus Licht, das durch Überlagerung von stehenden Lichtwellen aus allen drei Raumrichtungen erzeugt wird. Das resultierende Laserlichtfeld ähnelt in seiner Form einem Stapel von Eierkartons, in dessen einzelnen Mulden sich die Atome niederlassen. Jeder dieser Gitterplätze wird mit genau zwei Atomen belegt. Anschließend wird durch Anlegen eines Magnetfeldes eine so genannte Feshbach-Resonanz adressiert, wodurch sich die zuvor ungebundenen Atompaare in den Mulden zu fragilen Molekülen chemisch verbinden. Die Tiefe der Mulde ist hier zunächst so gewählt, dass die Moleküle in der Mulde gefangen sind und nicht auf Nachbarplätze abwandern können.

Was aber passiert, wenn das optische Gitter direkt im Anschluss daran so verändert wird, dass es die Form eines Stapels von Wellblechen annimmt? Eine solche Transformation der Gittergeometrie lässt sich anhand der eingestrahlten Laserleistung gezielt realisieren. Die Moleküle befinden sich nun perlenkettenförmig aufgereiht in einer Art Rinne und haben prinzipiell die Möglichkeit, sich entlang der Rinne zu bewegen. Intuitiv könnte man also erwarten, dass die Moleküle dann mit ihren Nachbarn zusammenstoßen und aufgrund ihrer fragilen Bauart dabei zerstört werden. Eine rapide Abnahme der Anzahl der Moleküle wäre die Folge.

Erstaunlicherweise zeigt sich jedoch im Experiment, dass sich die Teilchen nicht vom Fleck rühren und nicht miteinander kollidieren. Warum das so ist, erklärt Dominik Bauer, Doktorand am Experiment: "Eigentlich kann man sich die Moleküle wie fragile Seifenblasen vorstellen. Wenn sie sich entlang der Rinne zu nahe kämen und mit einem Nachbarn zusammenstießen, würden beide zerfallen. Da die Moleküle aber von der Quantenmechanik beherrscht werden, tun sie dies nicht. Stattdessen halten sie von vornherein Abstand voneinander. Obwohl sie Bosonen sind, zeigen sie somit ein Verhalten, dass man so eigentlich nur von Fermionen kennt. Im Fachjargon gesprochen: das molekulare, bosonische Gas ist fermionisiert."

Die Ergebnisse dieses Experiments zeigen Möglichkeiten auf, starke Korrelationen in Quantensystemen zu realisieren, die aufgrund der heftigen Wechselwirkung der Teilchen eigentlich unter hohen Verlusten leiden würden. In solchen Systemen sollten sich daher - so hofft man - Rahmenbedingungen schaffen lassen, die Verluste so weit reduzieren, dass Experimente innerhalb vernünftiger Zeitspannen durchzuführen sind. Aufgrund der allgemeinen Natur der im Experiment aufgedeckten Mechanismen könnten sich damit nicht nur für die Physik kalter Gase, sondern auch für ein viel breiteres Spektrum der Naturwissenschaften neue Perspektiven eröffnen. [O. M.]

Originalveröffentlichung:
N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J. Garcia-Ripoll, J. I. Cirac, G. Rempe, S. Dürr
"Strong Dissipation Inhibits Losses and induces Correlations in Cold Molecular Gases"

Science, 6. Juni 2008

Kontakt:

Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Prof. Dr. Ignacio Cirac
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Telefon: +49 - 89 / 32905 - 736
Fax: +49 - 89 / 32905 - 336
E-Mail: ignacio.cirac@mpq.mpg.de
Dipl. phys. Dominik Bauer
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 377
Fax: +49 - 89 / 32905 - 311
E-Mail: dominik.bauer@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse & Kommunikation
Max-Planck-Institut für Quantenoptik
Telefon: +49 - 89 / 32905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Berichte zu: Bosonen Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blauer Phosphor – jetzt erstmals vermessen und kartiert
15.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

Neurowoche 2018: 7000 Experten für Gehirn und Nerven tagen in Berlin

15.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Methode der statistischen Inferenz in der Magnetresonanztomographie (fMRI) entwickelt

16.10.2018 | Medizintechnik

Tiefsee ergründen – erstmalige LIBS-Messung bei 600 bar

16.10.2018 | Materialwissenschaften

Ausgefeilte Videotechnologie lenkt von Werbung ab

16.10.2018 | Kommunikation Medien

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics