Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartet heißes Plasma

21.04.2008
MPQ-Forscher entdecken mit neuer Technik unerwartete Eigenschaften von Laser-induzierten Stickstoff-Plasmen

Laserinduzierte Plasmen haben zahlreiche Anwendungen in der Kernfusion, der Teilchenbeschleunigung sowie für die Erzeugung von Röntgenstrahlung oder Attosekunden-Pulsen im extremen Ultraviolett.

Um die für den jeweiligen Zweck optimalen Eigenschaften einzustellen, bedarf es einer genauen Kenntnis der zeitlichen Entwicklung dieses Zustandes. Dr. Martin Centurion, Peter Reckenthäler und Dr. Ernst Fill aus der Abteilung Attosekunden- und Hochfeldphysik (Leitung Prof. Ferenc Krausz) am Max-Planck-Institut für Quantenoptik (Garching) konnten nun mit einer neuartigen Abfrage-Technik die Plasma-Dynamik in Echtzeit verfolgen (Nature Photonics, DOI 10.1038/nphoton.2008.77).

Dabei zeigte es sich, dass durch ein so genanntes OFI (durch optische Felder induziertes) -Plasma wider Erwarten hohe elektrische und magnetische Felder aufgebaut werden. Diese Erkenntnis kann entscheidende Auswirkungen auf viele Anwendungen lasererzeugter Plasmen haben.

... mehr zu:
»Elektron »Pikosekunde »Plasma
Ein Plasma ist ein heißer und dichter Materiezustand, in dem sich Atome gewissermaßen in ihre Bestandteile - Kerne und Elektronen - aufgelöst haben, sodass positiv geladene Ionen und negativ geladene Elektronen gleichberechtigt nebeneinander existieren. Nach gängigen Theorien ist das Innere eines Plasmas ein feldfreier Raum, in dem die elektrischen Ladungen gleichförmig verteilt sind. Nur innerhalb kleinster Dimensionen, der sogenannten Debye-Länge (etwa 0,1 Mikrometer) sollte es zu Fluktuationen von elektrischen Ladungen kommen. Die Untersuchungen haben jedoch gezeigt, dass sich im Zentrum eines OFI-Plasmas offenbar ein positiv geladener Bereich herausbildet, den eine weit über die Debye-Länge herausreichende Wolke von Elektronen umgibt.

Zur Erzeugung eines OFI-Plasmas lassen die Wissenschaftler aus einer Düse Stickstoff strömen. Diesen Gasstrahl beschießen sie mit intensiven, nur 50 Femtosekunden (1 fs=10 hoch -15 sec) dauernden Laserpulsen aus dem sichtbaren Spektralbereich. Die hohen Feldstärken innerhalb der Pulse ionisieren die Atome und führen zur Plasmabildung im Laserbrennpunkt. Dieses Gasplasma wird anschließend mit drei Pikosekunden währenden Pulsen (1 ps = 10 hoch -12 sec) aus Elektronen bombardiert, die eine Energie von 20 Kiloelektronenvolt haben. Die Repetitionsrate der Laser- und Elektronenpulse beträgt 1 kHz (=1000 Pulse pro Sekunde).

Nach dem Passieren des Plasmas wird der Elektronenstrahl (Durchmesser: 3 mm) auf einem Detektor nachgewiesen. Die Wirkung des Plasmas auf den "Abfragestrahl" aus Elektronen spiegelt sich in deren Verteilung wieder: Für ein feldfreies Plasma würde man erwarten, dass die Elektronen den Detektor gleichmäßig bedecken und nur durch die Gasdüse abgeblockt werden. Die Experimente zeigten jedoch, dass auf dem Detektor ein interessantes, sich rasch veränderndes Muster entsteht.

Um die zeitliche Entwicklung des Plasmas zu verfolgen, wird die Zeit zwischen Laser- und Abfrage-Puls variiert. Die so im Abstand von wenigen Pikosekunden gewonnenen Aufnahmen (siehe Abbildung unten von links nach rechts) zeigen folgendes: zunächst - nach einigen wenigen Pikosekunden - entsteht im Bereich des Laserbrennpunkts ein "Loch" im Elektronenstrahl. Die hier fehlenden Elektronen sind offenbar in zwei keulenförmige Gebiete abgewandert, die sich entlang des Laserstrahls auf jeder Seite des Plasma-Gebietes ausbreiten. Diese Entwicklung hält etwa 80 Pikosekunden lang an. Dann häufen sich die Abfrage-Elektronen zu einem hellen "Fleck" im Zentrum an, sodass ihre Dichte hier sogar größer als im ursprünglichen Strahl ist. Nach etwa 300 Pikosekunden werden diese Muster allmählich unscharf.

Für diese Beobachtungen haben die Wissenschaftler folgende Erklärung: Bereits kurz nach der Erzeugung des Plasmas durch den Laserpuls formt sich im Zentrum ein positiv geladener Bereich, den eine Wolke heißer Elektronen umgibt. Durch diese Ladungstrennung entstehen elektrische und magnetische Felder, die die Elektronen des "Abfragestrahls" so ablenken, dass sich die oben beschriebene Verteilung ergibt.

Die Elektronenwolke reicht über das ursprüngliche Plasma hinaus, nach 100 Pikosekunden ist ihr Radius etwa 1000 mal größer als die Debye-Länge. Unter diesen Bedingungen wird der Abfragestrahl jetzt auf das Zentrum des Detektors fokussiert, was das Auftreten des hellen Flecks erklärt.

Numerische Simulationen, die auf diesen Annahmen beruhen, geben die experimentellen Daten gut wieder und erlauben es, Parameter wie Feldstärken, Gesamtladung und Elektronentemperatur zu berechnen. Sie zeigen, dass die beschriebenen Ladungsverteilungen nur dann auftreten können, wenn sich einige der Plasma-Elektronen extrem aufheizen und viel heißer werden als das Plasma selbst. Ein Prozess, der dies bewirken kann, sind Stöße der zurückkehrenden oszillierenden Elektronen mit den Atomkernen.

Die hier demonstrierte "Deflektometrie"-Technik vermag Änderungen der Plasma-Entwicklung innerhalb von einigen Pikosekunden mit einer räumlichen Auflösung von 30 Mikrometern einzufangen. Ihre hohe Empfindlichkeit beruht darauf, dass kleine Ladungsverschiebungen innerhalb des Plasmas sich als Störungen im räumlichen Profil des Elektronenstrahls bemerkbar machen. Die neue Methode birgt das Potential, die Physik lasererzeugter Plasmen besser zu verstehen und eventuell auf Plasmen basierende Elektronen- und Ionenbeschleuniger gezielt zu verbessern. [O.M.]

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Elektron Pikosekunde Plasma

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

nachricht Neuartiger topologischer Isolator
12.10.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Neuartiger topologischer Isolator

Erstmals haben Physiker einen topologischen Isolator gebaut, in dem nicht Elektronen oder Licht fließen, sondern Teilchen aus Licht und Materie. Ihre Neuerung präsentieren sie in „Nature“.

Topologische Isolatoren sind Materialien mit sehr speziellen Eigenschaften. Sie leiten elektrischen Strom oder Lichtteilchen nur an ihrer Oberfläche oder an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

PV Days in Halle zeigen neue Chancen für die Photovoltaik

11.10.2018 | Veranstaltungen

Methan als umweltfreundlicher Kraftstoff für LKW, Busse und andere Nutzfahrzeuge

10.10.2018 | Veranstaltungen

Schlaf ist Medizin: Neue Erkenntnisse aus der Schlafforschung

08.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

15.10.2018 | Biowissenschaften Chemie

Bio-Angeln für Seltene Erden: Wie Eiweiß-Bruchstücke Elektronik-Schrott recyceln

15.10.2018 | Biowissenschaften Chemie

Sauber trennen: Neuer Klebstoff für besseres Recycling

15.10.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics