Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atombewegungen sichtbar machen

14.03.2008
Physiker und Gerätebauer haben einen kommerziellen Prototyp für die Femtosekunden-Röntgenbeugung entwickelt. Damit steht ein international konkurrenzloses Gerät für Grundlagenuntersuchungen in Physik, Chemie und Materialwissenschaften zur Verfügung, das ultra schnelle Atombewegungen sichtbar machen kann.

Physiker am Max-Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin-Adlershof haben in Zusammenarbeit mit Gerätebauern der Adlershofer Firma IfG - Institute for Scientific Instruments GmbH und der Fa. Feinmechanik Teltow ein Prototyp-Labor-Gerät für Röntgenbeugung im Ultrakurzzeitbereich entwickelt.

In einer modular aufgebauten Anlage werden unter Verwendung eines kommerziellen Hochleistungslasers Blitze harter Röntgenstrahlung erzeugt, deren Dauer ungefähr eine Zehntel Pikosekunde (1 Pikosekunde = 1 Millionstel einer Millionstel Sekunde) beträgt. Damit steht ein international konkurrenzloses Gerät für Grundlagenuntersuchungen in Physik, Chemie und Materialwissenschaften zur Verfügung.

In der Nanotechnologie und der molekularen Biologie arbeiten Wissenschaftler mit immer kleineren Strukturen wie einzelnen Atomschichten oder Molekülgruppen. Sie wollen in diese Strukturen gezielt eingreifen und dadurch bestimmte Funktionen erzielen. Veränderungen in solchen Nanostrukturen haben eines gemeinsam: Sie spielen sich auf unvorstellbar kleinem Raum ab und sie sind extrem schnell. "Für das Verständnis dieser ultraschnellen Prozesse brauchen wir ein anschauliches Bild davon, was auf atomarer Ebene passiert", sagt der Physiker Matias Bargheer. Bereits seit hundert Jahren liefert die Röntgenbeugung extrem genaue Informationen über die Struktur von Molekülen und Festkörpern. Seit einigen Jahren können Physiker nun auch ultrakurze Röntgenblitze herstellen. Diese liefern Schnappschüsse der ultraschnellen Atombewegungen mit einer Belichtungszeit von etwa 0,1 Pikosekunde.

... mehr zu:
»Atombewegung »Physik »Pikosekunde

Nur wenige hochspezialisierte Forschergruppen - dazu zählt auch die Gruppe am MBI - konnten bisher solche Röntgenblitze erzeugen. Aber auch viele Grundlagenforscher aus den Bereichen Chemie und Materialwissenschaften interessieren sich für die Methode. Matias Bargheer: "Unser ursprünglicher Versuchsaufbau war aber nicht ohne weiteres auf andere Labore übertragbar und erforderte viel Spezialwissen." Das entwickelte Prototyp-Labor sei nun auch von Nicht-Laserphysikern bedienbar und zudem noch "erschwinglicher als ein Computer-Tomograph", so Bargheer. Erst in einigen Jahren werden vergleichbare Untersuchungen an sogenannten Freie-Elektronen-Lasern im Röntgenbereich möglich sein, die sich derzeit noch im Aufbau befinden.

Mit der Methode der Femtosekunden-Röntgenbeugung gelang es dem Physiker und seinen Kollegen bereits, ultraschnelle Bewegungen in verschiedenen Nanostrukturen zu verfolgen und die Mechanismen zu identifizieren, die zu ultraschnellen Veränderungen führen. Sie konnten beispielsweise beobachten, wie durch optische Anregung einer metallisch-ferroelektrischen Nanoschicht die elektrische Polarisation in nur 1 Pikosekunde abgeschaltet werden konnte (Korff-Schmising et al, Physical Review Letters, 98, 257601, 2007). "Solche Erkenntnisse können beim Design neuer elektronischer Bauelemente helfen, die unsere Computer noch tausendmal schneller machen", hofft Bargheer. Ähnliche Methoden haben die MBI-Physiker auch auf Halbleiter-Nanostrukturen und Molekülkristalle angewendet.

Über das Prototyp-Labor zur Femtosekunden-Röntgenbeugung, dessen Entwicklung auch im Rahmen des PROFIT Programms des Berliner Senats gefördert wurde, berichten Matias Bargheer, der mittlerweile eine Juniorprofessur an der Universität Potsdam innehat, und seine Kollegen vom Institute for Scientific Instruments am 17. März 2008 auf der "Laser Optics Berlin". Neben den wissenschaftlichen Ergebnissen und den geschaffenen Möglichkeiten zu einer breiten Applikationsforschung haben sich bereits erste kommerzielle Erfolge ergeben. Noch in diesem Jahr wird für ein Max-Planck-Institut in Göttingen eine weitere Femtosekunden-Röntgenquelle vom IFG aufgebaut. Weitere Anfragen liegen bereits vor.

Weitere Informationen:
Prof. M. Bargheer, Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknechtstr. 24-25, 14476 Potsdam, Tel. 0331 977 4272, Fax.: 0331 977 549, E-Mail: bargheer@uni-potsdam.de

Prof. T. Elsässer, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2 A, 12489 Berlin, Tel. 030 63921401, Email: elsaesser@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Berichte zu: Atombewegung Physik Pikosekunde

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wettrennen in Sonnennähe: Ionen sind schneller als Atome
22.03.2019 | Georg-August-Universität Göttingen

nachricht Die Zähmung der Lichtschraube
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics