Quantenelektronik – keine halben Sachen

Die Elektronen in einem Atom bewegen sich nach den Gesetzen der Quantenmechanik in sogenannten Orbitalen, die 100 Millionen mal kleiner sind als eine Münze. Ganz ähnlich bewegen sich auch in Metallringen die Elektronen in Orbitalen, die sich allerdings über den gesamten Ring erstrecken können.

Gemeinsam mit einem Gastwissenschaftler aus Moskau haben Augsburger Physiker am Zentrum für Elektronische Korrelationen und Magnetismus (EKM) solche Ringorbitale untersucht. Die Ergebnisse dieser Untersuchungen, die jetzt in der aktuellen Ausgabe des Journals „Nature Physics“ veröffentlicht wurden, sind überraschend: Sie widersprechen der etablierten Lehrmeinung, wonach die Magnetfeldperiode in Supraleitern h/2e sei, nachdem die Ladung der stromtragenden Elektronenpaare 2e beträgt.

Wie die Augsburger Forschergruppe entdeckte, ist die Magnetfeldperiode mit h/e doppelt so groß wie bislang angenommen. Für zahlreiche elektronische Anwendungen ist dies von hoher Relevanz. Die Berechnung der genannten Orbitale gelang den Augsburger Physikern mit einem eigens entwickelten Computerprogramm, durch das zudem die faszinierende Schönheit dieser elektronischen Strukturen offenbart wurde (siehe Abbildungen).

In supraleitenden Metallen kann der Strom in Ringen verlustfrei kreisen. Der Stromfluss, der durch die Elektronen in den Ringorbitalen getragen wird, kann durch ein Magnetfeld gesteuert werden, das den leeren Innenraum des Rings durchdringt. Das Magnetfeld verändert dabei die Orbitale in so raffinierter Weise, dass sich mit wachsendem Magnetfeld die Stromrichtung immer wieder umdreht. Die Periodizität dieser Oszillation wird durch zwei fundamentale Naturkonstanten bestimmt: durch das Planck'sche Wirkungsquantum h und durch die Elementarladung e. Mit der vor fünfzig Jahren entwickelten Theorie der Supraleitung hatte sich die Überzeugung etabliert, dass für Supraleiter die Magnetfeldperiode h/2e sei, da der Strom von Elektronenpaaren getragen wird und die Ladung dieser Paare 2e beträgt.

Die Physiker in Augsburg entdeckten jedoch, dass die Magnetfeldperiode in der Regel h/e ist, obwohl die Elektronen im Supraleiter gepaart sind. Damit ist diese Konstante also doppelt so groß, wie man jahrzehntelang zu wissen glaubte. Dies gilt auch für die Hochtemperatursupraleiter, für deren Entdeckung 1987 der Physik-Nobelpreis vergeben wurde. Da kleine supraleitende Ringe häufig in supraleitender Elektronik integriert sind, ist diese Entdeckung für elektronische Anwendungen relevant, zum Beispiel für schnelle Schalter in der Datenverarbeitung oder für supraleitende Qubits, die als elementare Bausteine einmal für Quanten-Computer eingesetzt werden sollen.

Die von den Physikern Florian Loder, Arno Kampf, Thilo Kopp, Jochen Mannhart, Christof Schneider und Yuri Barash in Nature Physics 4, 112 (2008) publizierten Forschungsergebnisse entstanden im Augsburger Sonderforschungsbereich „Kooperative Phänomene im Festkörper: Metall-Isolator-Übergänge und Ordnung mikroskopischer Freiheitsgrade“ (SFB 484) der Deutschen Forschungsgemeinschaft.

Originalbeitrag:

„Magnetic flux periodicity of h/e in superconducting loops“, F. Loder, A. P. Kampf, T. Kopp, J. Mannhart, C. W. Schneider, and Y. S. Barash, Nature Physics 4, 112 (2008). (doi:10.1038/nphys813) http://www.nature.com/nphys/journal/v4/n2/abs/nphys813.html

Kontakt und weitere Informationen:

Prof. Dr. Thilo Kopp & Prof. Dr. Arno P. Kampf
Zentrum für Elektronische Korrelationen und Magnetismus
Universität Augsburg
D-86135 Augsburg
Telefon 0821/598-3676 oder -3702
thilo.kopp@physik.uni-augsburg.de
arno.kampf@physik.uni-augsburg.de
Bildergalerie mit weiteren Abbildungen von Elektronenorbitalen unter:
http://www.uni-augsburg.de/exp6/Ringorbitale
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp5/ekm/ekm.shtml – EKM
http://www.physik.uni-augsburg.de/sfb484/index.de.shtml – SFB 484
Korrektur vom 16.02.2008
Sollten Sie über den angegebenen Link http://www.uni-augsburg.de/exp6/Ringorbitale keinen Zugang zur Fotogalerie erhalten, dann wählen Sie bitte http://www.physik.uni-augsburg.de/exp6/research/theory/ringorbitals/ringorbitals_d.shtml

Media Contact

Klaus P. Prem idw

Weitere Informationen:

http://www.uni-augsburg.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer