Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abbildung und Manipulation atomarer Spins

30.04.2010
Neue Möglichkeiten für zukünftige Computertechnologie

Wie die renommierte britische Fachzeitschrift „Nature Nanotechnology“ berichtet, hat ein internationales Forscherteam an der Universität Hamburg mit einem Rastertunnelmikroskop eine Kette von Kobaltatomen gebaut und deren magnetische Eigenschaften untersucht.

Die spinsensitiven Messungen („Spins“ - magnetische Momente von Elektronen) zeigen überraschenderweise, dass die beobachtete Form der Atome von deren magnetischer Orientierung abhängt – ein Effekt, der von Forschern der Kieler Universität erklärt werden konnte. Diese Arbeit ist die erste weltweit, die Spinsensitivität mit der Technik der Atommanipulation kombiniert, und eröffnet so neue Möglichkeiten, den Magnetismus künstlich hergestellter atomarer Strukturen zu untersuchen.

Der Magnetismus gehört zu den ältesten bekannten physikalischen Phänomenen und ist dennoch eines der aktuell spannendsten Forschungsgebiete. Neue Messtechniken erlauben dabei einen Einblick in die grundlegenden Wechselwirkungen, die die Eigenschaften magnetischer Strukturen auf der atomaren Skala bestimmen. Die treibende Kraft ist dabei der Wunsch nach höheren Speicherdichten auf Computerfestplatten und die damit einhergehende Miniaturisierung der schreib- und lesbaren Informationseinheiten.

Das digitale Alphabet besteht nur aus zwei Zeichen, „0“ und „1“, und ist daher ideal zur magnetischen Kodierung in Nord- und Südpol geeignet. Auf aktuellen Festplatten kann man sich die kleinsten Dateneinheiten – die Bits – wie winzige Kompassnadeln vorstellen: je nachdem, ob die Magnetisierungsrichtung nach Norden oder Süden zeigt, können Datenbits die Werte „0“ oder „1“ annehmen. Der Schreib-Lese-Kopf einer Festplatte kann die Bits beliebig auf Nord- oder Südpol ausrichten oder deren Ausrichtung einfach abfragen.

Das ultimative Ziel ist die Speicherung eines Bits als Magnetisierungsrichtung eines einzelnen Atoms. Bei dieser Miniaturisierung bestehen jedoch zwei Grundprobleme: i. Die Energiebarriere zwischen den Zuständen „0“ und „1“ nimmt mit der Strukturgröße ab, sodass thermische Fluktuationen zu Datenverlust führen können. ii. Die magnetischen Eigenschaften atomarer Strukturen lassen sich kaum vorhersagen: Ein einzelnes magnetisches Atom verhält sich eben nicht wie der Magnet, der eine Notiz am Kühlschrank festhält.

Bei den in Hamburg durchgeführten Experimenten wurden Kobaltatome auf eine Mangan-oberfläche aufgebracht. Die Manganatome ordnen sich magnetisch in Form einer Spirale. Diese Oberfläche wurde aus zwei Gründen gewählt: i. Thermische Fluktuationen der magnetischen Momente („Spins“) der Kobaltatome werden durch die sogenannte Austauschkopplung unterbunden und ii. die Kobaltatome haben, durch die Manganoberfläche vorgegebene, ortsabhängig variierende Spinrichtungen, was eine systematische Untersuchung ermöglicht. Als Messtechnik wurde spinpolarisierte Rastertunnelmikroskopie (SP-RTM) eingesetzt. Dabei tastet eine magnetische Spitze in einem Abstand von einigen Zehntel Nanometern einen Oberflächenbereich ab. Der gemessene Tunnelstrom ermöglicht ein Abbild der Elektronendichte und der lokalen Spinrichtung mit extrem hoher Ortsauflösung.

Überraschenderweise ist nicht nur die gemessene Höhe der Kobaltatome, sondern auch deren Form im SP-RTM Bild von der Spinrichtung abhängig. Mit Hilfe von parameterfreien Elektronenstrukturrechnungen konnten theoretische Physiker der Christian-Albrechts-Universität zu Kiel zeigen, dass hierfür spinabhängige orbitale Symmetrien der Kobaltelektronen verantwortlich sind. Dies hat zur Folge, dass jeder Spinrichtung eine spezifische Form zugeordnet werden kann und daher pro Atom im Prinzip mehr als nur ein Bit auslesbar ist. Durch Expertise in atomarer Manipulation, die im Rahmen einer Gastprofessur aus Ohio (USA) nach Hamburg gebracht wurde, konnte man experimentell noch einen Schritt weiter gehen: Die Kobaltatome können mit der Spitze eines Rastertunnelmikroskops beliebig positioniert werden und richten ihren Spin jeweils parallel zu den nächsten Nachbaratomen der Manganoberfläche aus. Dadurch kann die Spin-Richtung einzelner Atome gezielt eingestellt werden.

Die in dieser Arbeit erstmals demonstrierte Kombination von Spinsensitivität und atomarer Manipulation eröffnet neue Perspektiven bei der Herstellung und Charakterisierung atomarer magnetischer Strukturen.

Weitere Informationen:

D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Menzel, K. von Bergmann, S. Heinze, A. Kubetzka and R. Wiesendanger
Imaging and Manipulating the Spin Direction of Individual Atoms, Nature Nanotechnology, online Veröffentlichung:

25 April 2010, DOI: 10.1038/NNANO.2010.64

Für Rückfragen:

Dipl.-Chem. Heiko Fuchs
Universität Hamburg
Institut für Angewandte Physik
Sonderforschungsbereich 668
Tel: 040 / 42838 - 69 59
E-Mail: hfuchs@physnet.uni-hamburg.de
URL: http://www.sfb668.de
Claudia Eulitz
Christian-Albrechts-Universität zu Kiel
Stabsstelle Presse und Kommunikation
Tel: 0431 / 880 - 4855
E-Mail: ceulitz@uv.uni-kiel.de

Birgit Kruse | idw
Weitere Informationen:
http://www.sfb668.de
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics