Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller wichtige Gene identifizieren – mit Hochdurchsatz-Sequenzierung

05.10.2015

Industriell relevante Gene von Mikroorganismen lassen sich mit modernen DNA-Sequenzierungstechnologien zuverlässig und schnell identifizieren. Das ist zum Beispiel interessant, um natürliche Wirkstoffe für Kosmetika oder Reinigungsmittel wirtschaftlich herstellen zu können oder Biogasanlagen zu optimieren. Wie sich die Hochdurchsatz-Sequenzierung nutzen lässt, stellen Fraunhofer-Forscherinnen und Forscher auf der Biotechnica vom 6. – 8. Oktober 2015 in Hannover vor.

Schon in der Antike nutzte der Mensch Mikroorganismen, um Brot und Bier herzustellen. Heute werden komplexe Moleküle wie Vitamine und pharmazeutische Wirkstoffe, aber auch Plattformchemikalien wie Zitronen- oder Essigsäure in großem Stil biotechnologisch mithilfe von molekularbiologisch optimierten Bakterien und Pilzen produziert, Tendenz steigend.


Mit modernen DNA-Sequenzierungstechnologien identifiziert das Fraunhofer IGB industriell relevante Gene und diagnostiziert pathogene Erreger zuverlässig – innerhalb kürzester Zeit. (© Fraunhofer IGB)

Dank rasanter Fortschritte in der Nukleinsäureanalytik kann mit modernen Hochdurchsatztechnologien, dem Next-Generation Sequencing (NGS), das komplette Genom von Organismen innerhalb von nur wenigen Stunden sequenziert werden.

Das Team um Dr. Kai Sohn am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart setzt die »Sequenzierungstechnologien der nächsten Generation« für die Analyse von Genen und Genomen, auch ganzer mikrobieller Gemeinschaften ein. Ein Beispiel: Für den Pilz Pseudozyma aphidis, erstellten sie innerhalb kürzester Zeit ein Referenzgenom. Der Pilz produziert Biotenside, die für den Einsatz in Reinigungsmittel oder Kosmetika interessant sind.

Von DNA-Fragmenten zum vollständigen Genom

»Um das Erbgut schnell zu entschlüsseln, zerlegen wir die komplette DNA in Millionen zufälliger Bruchstücke mit einer Länge von mehreren 1000 Basen, die dann vervielfältigt und anschließend gleichzeitig sequenziert werden«, erläutert der Biologe Dr. Christian Grumaz. Da sich die Bruchstücke teilweise überlappen, können die Wissenschaftler die einzelnen Fragmente anschließend wieder zum gesamten Genom zusammensetzen. »Diese Genom-Assemblierung lässt sich aufgrund der gigantischen Datenmengen nur mithilfe mathematischer Modelle und Algorithmen am Rechner lösen«, ergänzt Bioinformatiker Philip Stevens.

Doch welche Abschnitte der DNA-Sequenz kodieren die relevanten Proteine, wo sitzen wichtige regulatorische Elemente, welche Abschnitte haben keine unmittelbar proteinkodierende Funktion? Gen-Annotation nennen die Experten den nächsten Schritt, in dem sie die entschlüsselten Sequenzen bekannten Genfunktionen zuordnen, wieder mithilfe der Bioinformatik. »Zunächst suchen wir mithilfe von Algorithmen die Genomsequenz nach typischen Basenpaarfolgen ab, die beispielsweise Start- und Stoppsignale von Genen kennzeichnen. Die zwischen diesen Signalen gefundenen Gensequenzen gleichen wir dann in Gen-Datenbanken auf ähnliche Basenpaarfolgen ab. So können wir der Gensequenz eine bereits bekannte Funktion zuordnen«, erklärt Stevens.

Um herauszufinden, welche der Gene im Genom des Pilzes für die Synthese der begehrten Biotenside verantwortlich sind, zogen die Forscher experimentelle Transkriptomanalysen hinzu. Diese zeigen, welche Gene unter den gewählten Bedingungen auch tatsächlich aktiv sind, das heißt, welche Gene abgelesen und in RNA, die Blaupause für das Protein, transkribiert werden. »Auf diese Weise konnten wir ein Cluster aus fünf nebeneinander liegenden Genen identifizieren, das die Information für die Synthese der Biotenside enthält«, resümiert Grumaz. Erst dieses Wissen liefert die Grundlagen, um den Pilz wirtschaftlich als Biotensidproduzent nutzen zu können.

Nicht kultivierbare Organismen analysieren

Die neuen NGS-Technologien sind nicht nur schnell. »Durch die direkte Sequenzierung einer Probe mit Mikroorganismen entfällt der aufwendige Schritt der Kultivierung im Labor«, beschreibt Gruppenleiter Sohn einen weiteren Vorteil. »So können selbst solche Mikroorganismen identifiziert werden, deren natürliche Wachstumsbedingungen wir experimentell nur unzureichend nachstellen können«. Beispiel für eine solche, dazu extrem heterogene, mikrobielle Gemeinschaft mit bis zu hunderten unterschiedlicher Bakterien sind Biogasanlagen.

Obschon die Biogasproduktion ein seit langem eingesetztes Verfahren ist, sind die beteiligten Mikroorganismen und ihre Reaktionswege noch weitgehend unbekannt. »Mittels bioinformatischer Methoden konnten wir über 200 am Biogasprozess beteiligte Arten identifizieren und gleichzeitig auch deren Anteile an der gesamten Bio-zönose bestimmen«, sagt Grumaz. So kann der Gesamtprozess besser verstanden und im Sinne höherer Biogasausbeuten gezielt gesteuert werden. Dies ermöglicht es landwirtschaftlichen Betreibern, den erneuerbaren Energieträger Biogas auch ohne staatliche Zuschüsse konkurrenzfähig zu konventioneller Energie zu machen.

Ein weiteres vielversprechendes Einsatzgebiet für die Hochdurchsatzsequenzierung von Mikroorganismen ist die Diagnostik. Mit dem Next-Generation Sequencing lassen sich Krankheitserreger wie Bakterien, Viren und Parasiten sicher, zuverlässig und schnell identifizieren. Um die Infektionsdiagnostik weiterzuentwickeln und auszubauen, hat das Wissenschaftlerteam am IGB bereits erste große Kliniken mit ins Boot geholt.

Das Fraunhofer IGB stellt seine Entwicklungen zur Hochdurchsatzsequenzierung von Mikroorganismen auf der Biotechnica vom 6.–8. Oktober 2015 in Hannover am Fraunhofer-Gemeinschaftsstand (Halle 9, Stand C34) vor.

Kontakt

Beate Koch

Leiterin Interne und Externe Kommunikation
Pressesprecherin
Fraunhofer-Gesellschaft

Telefon: +49 89 1205-1333

Dr. Claudia Vorbeck | Fraunhofer IGB

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tief in die Zelle geblickt

05.08.2020 | Biowissenschaften Chemie

Tellur macht den Unterschied

05.08.2020 | Biowissenschaften Chemie

Humane zellbasierte Testsysteme für Toxizitätsstudien: Ready-to-use Tox-Assay (hiPS)

05.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics