Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starker Kernspintomograph erstmals für Patienten genutzt

10.12.2012
Am Magnetresonanzzentrum entstehen hochaufgelöste Bilder aus dem Körperinneren für die Diagnose

Am Hochfeld-Magnetresonanzzentrum des Max-Planck-Instituts für biologische Kybernetik wurden in Kooperation mit der Abteilung Neuroradiologie und dem Zentrum für Neuroonkologie des Universitätsklinikums Tübingen erstmals Patienten mit einem Gehirntumor am 9,4 Tesla-Kernspintomographen untersucht.


Die Abbildung zeigt das Hochfeld-MRT-Gerät des MPI für biologische Kybernetik, das dort zur Forschung zur Verfügung steht und mit dem jetzt die ersten Patienten, die an Hirntumoren erkrankt sind, untersucht wurden.

Bild: Stephan Müller-Naumann / Max-Planck-Institut für biologische Kybernetik Tübingen

Derzeit sind weltweit nur drei Magnetresonanzsysteme mit einer Magnetfeldstärke von 9,4 Tesla installiert. Tübingen ist das erste Zentrum, in dem es auch für Patienten eingesetzt wird.

Die Magnetresonanztomografie (MRT) ist heute aus der medizinischen Diagnostik nicht mehr weg zu denken. Der besondere Vorteil der MRT ist, dass die Untersuchungen – im Gegensatz zur Röntgendiagnostik oder Computertomografie (CT) – ohne Strahlenbelastung für den Patienten durchgeführt werden können. Mit der MRT sind insbesondere hochaufgelöste Untersuchungen von Weichteilstrukturen möglich, wodurch exzellente Darstellungen des Gehirns, aber auch von Knorpel, Herz oder anderen Organen, mit guter räumlicher Auflösung, möglich sind.

Weltweit gibt es nur drei Magnetresonanztomografen mit 9,4 Tesla. Tesla(T) ist die Einheit, in der die magnetische Flussdichte gemessen wird. Klinische Kernspintomografen, wie sie auch in vielen Arztpraxen zu finden sind, haben klassischerweise 1,5T bis 3T Magnetfeldstärke. Das MRT-System, wie es in Tübingen am MPI zu finden ist, bietet die Möglichkeit, sehr hoch aufgelöste Bilder aufzunehmen, die noch Unterschiede in Gewebsstrukturen unterhalb eines Millimeters zeigen. Von dieser Technik sollen nun auch Patienten profitieren. Die Tübinger Wissenschaftler sind unter der Anleitung von Klaus Scheffler vom Max-Planck-Institut für biologische Kybernetik und Direktor am Tübinger Universitätsklinikum sowie Ulrike Ernemann, ärztliche Direktorin am Tübinger Universitätsklinikum die ersten, die diese Methode zur Diagnostik auch bei Patienten und nicht nur bei gesunden Probanden einsetzten.

Die MRT-Untersuchungen der Patienten wurden mit einer speziell für das 9,4 Tesla-Gerät entwickelten Technik aufgenommen – der SAR-optimierten Turbo-Spin-Echo-(TSE)Technik.

SAR ist die „spezifische Absorptionsrate“ für den betreffenden Patienten. Sie ist das Maß für die Absorption von elektromagnetischen Feldern in biologischem Gewebe. Die TSE-Technik ist eine in der MRT verwendete Messsequenz, bei welcher mit Hilfe von Echos die unterschiedlichen Gewebearten von einander unterschieden werden können.

Neben hochauflösenden Bildern ist die Darstellung der Stoffwechselprodukte innerhalb des Gehirntumors ein weiteres Ziel der Wissenschaftler. Diese können entsprechend ihrer charakteristischen Verteilung Aufschluss über den vorliegenden Tumortyp geben. Die mit 9,4T aufgenommenen Magnetresonanzprotonenspektren im Tumor und in den gesunden Gehirnregionen zeigen eine Vielfalt von physiologischen und tumorspezifischen Stoffwechselprodukten, welche bei niedrigeren Feldstärken nicht eindeutig getrennt werden könnten. Hochgenaue Bilder des Tumors ermöglichen in vielen Fällen auch eine gezieltere Behandlung der Patienten im Rahmen der medikamentösen Therapie und Nachsorge. Mit Hilfe der MRT kann der Tumor auch längerfristig beobachtet werden um zu überprüfen, wie dieser auf die Behandlung reagiert.

Bisher ist die Hochfeld-Magnetresonanztomografie eine ergänzende Methode und kann die klassischen Untersuchungen nicht ablösen. Doch besteht die Hoffnung, dass mit ihr Krankheiten besser diagnostiziert werden können und Tumore besser behandelbar werden. Die Tübinger Forscher arbeiten derzeit an der Weiterentwicklung ihrer Methoden, um sie auch bei anderen Fragestellungen, beispielsweise bei der Untersuchung neurodegenerativer Erkrankungen, einsetzen zu können.

Weitere Informationen über die Forschung im Magnetresonanzzentrum:
http://www.kyb.mpg.de/de/forschung/abt/ks.html

Ansprechpartner:
Prof. Dr. Klaus Scheffler
Max-Planck-Institut für biologische Kybernetik und Universitätsklinikum Tübingen
Tel.: 07071 601-701
E-Mail: klaus.scheffler@tuebingen.mpg.de

Prof. Dr. med. Ulrike Ernemann
Universitätsklinikum Tübingen
Tel.: 07071 29-86024
E-Mail: ulrike.ernemann@med.uni-tuebingen.de
Stephanie Bertenbreiter (Presse- & Öffentlichkeitsarbeit)
Max-Planck-Institut für biologische Kybernetik
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Das 1805 gegründete Tübinger Universitätsklinikum gehört zu den führenden Zentren der deutschen Hochschulmedizin und trägt als eines der 32 Universitätsklinika in Deutschland zum erfolgreichen Verbund von Hochleistungsmedizin, Forschung und Lehre bei. Von der einzigartigen Verbindung aus Wissenschaft und Praxis profitieren in Tübingen jährlich etwa 67 000 stationäre und 330 000 ambulante Patienten. Sie erhalten am Universitätsklinikum eine medizinische Maximalversorgung nach neuesten Erkenntnissen. Das Einzugsgebiet erstreckt sich vom Ballungsraum Mittlerer Neckar bis an den Bodensee. Als größter Arbeitgeber der Region beschäftigt das Universitätsklinikum 8 700 Voll- und Teilzeitkräfte in 17 Kliniken, 8 Instituten und 12 Zentren. (http://www.medizin.uni.tuebingen.de)

Stephanie Bertenbreiter | idw
Weitere Informationen:
http://www.medizin.uni.tuebingen.de
http://www.kyb.tuebingen.mpg.de/de/forschung/abt/ks.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mobile Herz-Lungen-Maschine ermöglicht akute Notfallversorgung
15.11.2018 | Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie e.V.

nachricht Mit Gold Krankheiten aufspüren
14.11.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Diode für Magnetfelder

Innsbrucker Quantenphysiker haben eine Diode für Magnetfelder konstruiert und im Labor getestet. Das von den Forschungsgruppen um den Theoretiker Oriol Romero-Isart und den Experimentalphysiker Gerhard Kirchmair entwickelte Bauelement könnte eine Reihe neuer Anwendungen ermöglichen.

Elektrische Dioden sind wichtige elektronische Bauteile, die elektrischen Strom in eine Richtung leiten, die Stromleitung in der anderen Richtung aber...

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Millimeterwellen für die letzte Meile

ETH-Forscher haben einen Modulator entwickelt, mit dem durch Millimeterwellen übertragene Daten direkt in Lichtpulse für Glasfasern umgewandelt werden können. Dadurch könnte die Überbrückung der «letzten Meile» bis zum heimischen Internetanschluss deutlich schneller und billiger werden.

Lichtwellen eigenen sich wegen ihrer hohen Schwingungsfrequenz hervorragend zur schnellen Übertragung von Daten.

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Podiumsdiskussion zur 11. Internationalen MES-Tagung in Hannover hochkarätig besetzt

21.11.2018 | Veranstaltungen

Hüftprothese: Minimalinvasiv oder klassisch implantieren? Implantatmodell wichtiger als OP-Methode

21.11.2018 | Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Blick auf molekulare Prozesse

21.11.2018 | Physik Astronomie

Wechsel zu Carbon Infrarot-Strahlern von Heraeus halbiert die Trocknungszeit für Siebdruck auf T-Shirts

21.11.2018 | Energie und Elektrotechnik

Wie aus Staub Planeten entstehen

21.11.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics