Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Operation mit Gammasonde: Chemiker und Mediziner entwickeln neue Strategien gegen Prostatakrebs

11.07.2016

Prostatakrebs ist eine der häufigsten Krebserkrankungen bei Männern. Selbst nachdem die Prostata operativ entfernt wurde, können sich in Lymphknoten im Becken neue Metastasen bilden. Forscherinnen und Forscher der Fakultäten für Medizin und Chemie an der Technischen Universität München (TUM) haben gemeinsam eine Methode entwickelt, mit der diese Tochtergeschwüre sichtbar gemacht und entfernt werden können, wenn sie noch sehr klein sind.

Lymphknoten, in denen Prostatakrebs-Metastasen wachsen, wirken im Anfangsstadium unauffällig. Da sie nur wenige Millimeter groß sind, lassen sie sich mit dem bloßen Auge nicht von ihren gesunden Nachbarn unterscheiden.


Durch an der TUM entwickelten Radioliganden können auch sehr kleine Metastasen sichtbar gemacht werden. Auf dieser PET/CT-Aufnahme ist ein veränderter Lymphknoten zu erkennen (Pfeil).

(Foto: Nuklearmedizin / TUM)

Hinzu kommt, dass Metastasen auch in Lymphknoten entstehen können, die an Stellen liegen, an denen Ärzte typischerweise nicht nach ihnen suchen würden. Auch die Standard-Bildgebungsmethoden Magnetresonanztomografie (MRT) und Computertomografie (CT) können diese kleinen befallenen Lymphknoten nicht zuverlässig identifizieren.

Für dieses Problem hat ein interdisziplinäres Team von Wissenschaftlerinnen und Wissenschaftlern an der TUM eine Lösung gefunden. Der Schlüssel liegt darin, die Krebszellen effektiv hervorzuheben. Dabei machen sich die Forscher zunutze, dass an der Oberfläche von Krebszellen in Prostata-Tumoren und ihren Metastasen das Protein PSMA (Prostataspezifisches Membranantigen) auftritt, das im menschlichen Körper sonst selten ist.

Molekül dockt gezielt an Metastasen an

An der TUM werden verschiedenste radioaktiv markierte Moleküle, sogenannte Radioliganden, entwickelt. Diese binden im Körper spezifisch an Proteine, in diesem Fall an PSMA, die sich auf der Zelloberfläche von krankhaften Gewebe befinden.

Werden derart markierte PSMA-bindende Moleküle in den Blutkreislauf eines Patienten injiziert, binden diese an eventuell vorhandene Metastasen und senden von dort aus eine begrenzte Zeit lang Strahlung aus. „Da wir auf Molekülebene arbeiten, ist die entstehende Strahlenbelastung minimal.

Dazu kommt, dass die verwendeten Elemente eine kurze Halbwertszeit haben und nur wenige Stunden bis Tage im Körper nachzuweisen sind“, erläutert Prof. Hans-Jürgen Wester, Inhaber des Lehrstuhls für Pharmazeutische Radiochemie.

Mithilfe einer Positronen-Emissions-Tomografie (PET) die mit einer CT oder MRT kombiniert wird, lassen sich die die nun Strahlung aussendenden Metastasen sichtbar machen und zeitgleich die genaue Lage der markierten Zellen bestimmen. Bei der Entwicklung und Anwendung des Verfahrens arbeiten Radiochemiker, Nuklearmediziner und Urologen der TUM eng zusammen.

Anhand der gewonnenen Daten können die Ärzte erkennen, ob eine Operation sinnvoll wäre und gemeinsam mit dem Patienten die Entscheidung für oder gegen einen Eingriff treffen. Neben den Ergebnissen der PET/CT-Untersuchung fließen aber auch Faktoren wie die physische Verfassung des Patienten in die Empfehlung der Mediziner ein.

Akustische Signale als Orientierung

Die Fähigkeit, Metastasen radioaktiv zu markieren, eröffnet auch neue Möglichkeiten, das befallene Gewebe zu entfernen. Ärzte und Wissenschaftler der TUM und des Klinikums rechts der Isar haben dafür gemeinsam das OP-Verfahren „PSMA radio-guided surgery" entwickelt.

Am Tag vor dem Eingriff erhält der Patient eine Infusion mit dem PSMA-Radioliganden. Während der Operation untersucht der Chirurg oder die Chirurgin dann das Gewebe mit einer Gammastrahlensonde. Ähnlich wie ein Geigerzähler misst diese die Strahlung und gibt den Wert über akustische Signale und eine Anzeige an das Operationsteam weiter.

„Auf diese Weise können wir gezielt die Lymphknoten identifizieren, die von Metastasen befallen sind, und sie sicher entfernen.“ sagt Oberarzt Dr. Tobias Maurer von der Klinik für Urologie. Mit herkömmlichen Verfahren könne es dagegen vorkommen, dass die veränderten Lymphknoten gar nicht gefunden werden. „Teilweise konnten durch diese Methode tumortragende Lymphknoten gefunden und entfernt werden, die so klein waren, dass noch nicht einmal unsere PET/MRT-Untersuchung vorab auf sie angesprochen hatte“, fügt Prof. Markus Schwaiger, Inhaber des Lehrstuhls für Nuklearmedizin hinzu.

Vielversprechende Ergebnisse

Bei der PSMA radio-guided surgery nimmt das Klinikum rechts der Isar eine Vorreiterrolle ein. Das Verfahren wird hier seit 2014 angewandt und stetig verbessert. Bisher wurden etwa 60 Patienten behandelt, die Ergebnisse sind vielversprechend. Systematische Nachuntersuchungen in einer Gruppe von 21 Patienten zeigten, dass bei zehn Patienten der Biomarker für Prostatakrebs um mehr als 90 Prozent reduziert wurde. Zwölf Patienten benötigten keine weitere Therapie bei einer Nachbeobachtungszeit von fast einem Jahr.

„Unsere Methode könnte sich als ein neuer und wichtiger Baustein für die multidisziplinäre Therapie von Prostata-Krebs etablieren“, sagt Prof. Jürgen Gschwend, Direktor der Klinik für Urologie. Bei erneutem Auftreten eines Prostata-Krebses könne man bei geeigneten Patienten selbst kleinste Metastasen entfernen und so unter Umständen eine nachträgliche Hormon- oder Strahlentherapie vermeiden. In den kommenden Monaten und Jahren müsse das Verfahren evaluiert werden. Insbesondere sei es wichtig herauszufinden, für welche Patienten es am besten geeignet sei, sagt Jürgen Gschwend.

Kontakt:

PD Dr. med. Tobias Maurer
Klinik und Poliklinik für Urologie
E-mail: tobias.maurer@tum.de
Tel.: +49-89-4140-2522

Publikationen:

T. Maurer, K. Schwamborn, M. Schottelius, H-J Wester, M. Schwaiger, J. Gschwend, M. Eiber. "PSMA THeranostics Using PET and Subsequent Radioguided Surgery in Recurrent Prostate Cancer". Journal of Clinical Genitourinary Cancer May 2016. DOI: 10.1016/j.clgc.2016.05.020

T. Maurer, G. Weirich, M. Schottelius, M. Weineisen, B. Frisch, A. Okur, H. Kübler, M. Thalgott, N. Navab, M. Schwaiger, H.-J. Wester, J. Gschwend, M. Eiber. "Prostate-specific Membrane Antigen–radioguided Surgery for Metastatic Lymph Nodes in Prostate Cancer". European Urology 68 (2015). DOI: 10.1016/j.eururo.2015.04.034

M. Eiber, T. Maurer, M. Souvatzoglou, A. Beer, A. Ruffani, B. Haller, F.-P. Graner, H. Kübler, U. Haberhorn, M. Eisenhut, H.-J. Wester, J. Gschwend, M. Schwaiger. "Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy". Journal of Nuclear Medicine. May 2015. DOI: 10.2967/jnumed.115.154153

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Berichte zu: CT Lymphknoten Metastasen Moleküle PET PSMA Prostatakrebs Strahlung TUM Urologie

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Krebs mit Sauerstoff sichtbar machen
19.02.2020 | Deutsches Krebsforschungszentrum

nachricht Mit Lasertechnik die Krebstherapie verbessern
13.02.2020 | Leuphana Universität Lüneburg

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics