Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sechs-Augen-Prinzip schützt den Körper vor Autoimmunkrankheiten

01.03.2010
In unserem Körper laufen rund um die Uhr die so genannten Dendritischen Zellen Patrouille und suchen nach Hinweisen für Tumore oder Infektionen. Sobald sie fündig werden, aktivieren sie die Killer-T-Zellen und leiten damit die Immunabwehr ein.

Forscher der Universität Bonn haben nun zusammen mit Kollegen an den Universitäten Düsseldorf, Hamburg, Utah (USA) und Melbourne (Australien) entdeckt, wie dies genau geschieht. Ihre Ergebnisse könnten unter anderem zur Entwicklung besserer Impfstoffe genutzt werden.

Sie erscheinen in der kommenden Ausgabe der Fachzeitschrift Nature Immunology (doi: 10.1038/ni.1848).

Einer der wichtigsten Abwehrmechanismen gegen Viren, Bakterien und Krebszellen sind die zytotoxischen T-Zellen. Sie können infizierte Körperzellen oder auch Krebszellen zerstören. Daher werden sie auch Killer-T-Zellen genannt.

Die Killer-T-Zellen sind normalerweise inaktiv. Das ist auch wichtig: Ansonsten könnten unerwünschte Autoimmunerkrankungen wie Diabetes mellitus oder Multiple Sklerose die Folge sein. Aktiviert werden sie durch die so genannten dendritischen Zellen. Diese patrouillieren kontinuierlich durch den Körper und suchen dort nach Hinweisen für Tumore oder Infektionen. Werden sie fündig - beispielsweise bei einer Virusinfektion -, tragen sie diese Information in die Lymphknoten.

Der Körper verfügt über viele Millionen verschiedener Killer-T-Zellen. Bei einer Infektion müssen es die dendritischen Zellen schaffen, nur die passenden davon in Angriffsbereitschaft zu versetzen. Diese teilen sich dann vieltausendfach und schwärmen aus, um nach dem Krankheitserreger zu suchen und ihn zu bekämpfen. Dies muss sehr schnell vor sich gehen, weil Viren sich extrem rasch vermehren.

"Duftspur" für die Killerzellen

Bislang war unklar, wie die Patrouille-Läufer so rasch die passenden Killerzellen alarmieren können. "Wir haben nun herausgefunden, dass dabei zwei weitere T-Zell-Typen eine wichtige Rolle spielen", erklärt Professor Dr. Christian Kurts von den Instituten für Molekulare Medizin und Experimentelle Immunologie der Uni Bonn.

Die Rede ist von den so genannten T-Helferzellen sowie den natürlichen Killer-T-Zellen (NKT-Zellen). Sie erkennen augenscheinlich, wenn eine dendritische Zelle Informationen über Viren oder Tumoren besitzt. Als Reaktion produzieren sie bestimmte Botenstoffe, so genannte Chemokine. Killer-T-Zellen folgen diesen Botenstoffen wie ein Hund einer Fährte. Sie finden so zielsicher diejenigen dendritischen Zellen, die ihnen sagen können, wo sich ein Virus oder eine Tumorzelle versteckt. "Die Killer-T-Zellen müssen also nicht nach dem Zufallsprinzip alle dendritischen Zellen des Körpers inspizieren", betont Verena Semmling, die diese Studie im Rahmen Ihrer Promotionsarbeit bei Prof. Kurts durchgeführt hat. "So können sie viel schneller aktiviert werden."

Immunsystem sucht den Konsens

Zusätzlich hat dieses Zusammenspiel verschiedener Immunzellen den Vorteil, dass es Autoimmunerkrankungen vermeiden kann: Die dendritische Zelle kann Killer-T-Zellen nur dann anlocken, wenn entweder T-Helferzellen oder NKT-Zellen ebenfalls ein Gefahrsignal erkannt haben. Die dendritische Zelle holt also eine zweite Meinung ein, bevor sie die Immunabwehr in Marsch setzt. Das funktioniert ganz besonders gut, wenn sowohl die T-Helferzellen als auch die NKT-Zellen zustimmen. Wenn also die dendritische Zelle noch eine dritte Bestätigung erhält, dann kann sie Killer-T-Zellen besonders gut aktivieren.

"Die Klärung dieser Mechanismen ist nicht nur von grundlagenwissenschaftlichem Interesse", betont Professor Dr. Irmgard Förster vom Institut für Umweltmedizinische Forschung an der Uni Düsseldorf. "Wenn wir verstehen, wie Immunzellen miteinander kommunizieren, können wir dieses Wissen nutzen, um Impfstoffe zu verbessern. So zeigen die vorliegenden Befunde, dass Impfstoffe besser funktionieren sollten, wenn sie auch T-Helferzellen und NKT-Zellen aktivieren."

Die jetzt publizierten Arbeiten wurden im Rahmen des an der Uni Bonn angesiedelten Sonderforschungsbereiches 704 durchgeführt. Die Deutsche Forschungsgemeinschaft (DFG) fördert darin die Erforschung der Immunabwehr.

Kontakt:
Professor Dr. Christian Kurts
Institute für Molekulare Medizin und Experimentelle Immunologie
Universität Bonn
Telefon: 0228/287-11031
E-Mail: ckurts@uni-bonn.de
Professor Dr. Irmgard Förster
Molekulare Immunologie, Institut für Umweltmedizinische Forschung
an der Universität Düsseldorf gGmbH
Telefon: 0211/3389-210
E-Mail: irmgard.foerster@uni-duesseldorf.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-duesseldorf.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Antikörper verringern Nebenwirkungen von Antibiotika in der Lunge
18.07.2018 | Charité – Universitätsmedizin Berlin

nachricht Gangmessdaten visualisieren und analysieren
16.07.2018 | Fachhochschule St. Pölten

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Superscharfe Bilder von der neuen Adaptiven Optik des VLT

18.07.2018 | Physik Astronomie

Schonend, schnell und präzise: Innovative Herz-Bildgebung in Freiburg

18.07.2018 | Medizintechnik

Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze

18.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics