Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Münchener Forscher wollen das tumorfördernde Molekül EpCAM stoppen

11.10.2012
Die Münchener Forscher Professor Olivier Gires und Dr. Dierk Niessing wollen das tumorfördernde Eiweiß „Epithelial Cell Adhesion Molecule“ (EpCAM) in Krebszellen hemmen.

EpCAM wird von vielen Krebszellen und auch von Krebsstammzellen in großer Menge produziert und begünstigt das Wachstum von Tumoren. EpCAM könnte sich daher als Angriffspunkt für neue Tumortherapien eignen. Die Münchener Forscher suchen mithilfe von Datenbanken und Simulationstechniken nach neuen wirkungsvollen Hemmstoffen. Gleichzeitig prüfen sie, wie bereits bekannte Therapien optimiert werden können.

„Wir arbeiten an der Identifikation und Charakterisierung neuer und noch spezifischerer, niedermolekularer Hemmstoffe, die die EpCAM-Funktion regulieren können“, erläutert Gires das Vorhaben. Dafür durchforstet das Forscherteam zunächst Sammlungen niedermolekularer, natürlicher und synthetischer Komponenten unter Verwendung ausgeklügelter zellulärer Systeme. Die Forscher hoffen, hier Hinweise auf verwendbare niedermolekulare EpCAM-Inhibitoren zu finden.

Der Strukturbiologie Niessing erforscht parallel die dreidimensionale Zusammensetzung von EpCAM-Signalmolekülen. In einer digitalen Simulation testet er dann gemeinsam mit Bioinformatikern, ob der atomare Aufbau potenziell wirksamer Molekülen mit den Bindungsstellen von EpCAM zusammenpasst. Dabei erarbeitet er auch Vorschläge, inwieweit geeignete Kandidaten in ihrem Aufbau verändert werden müssten, um deren Wirkung zu optimieren. Vielversprechende Hemmstoffe wollen die Forscher dann im Labor auf ihre tatsächliche Wirksamkeit testen.

Im Blick haben Gires und Niessing insbesondere die Bindungsstelle zu einem zentralen Interaktionspartner von EpCAM. Ohne diesen kann EpCAM nicht aktiv werden. Ziel ist es, ein Molekül zu finden, das in seiner atomaren Struktur ebenfalls an die Bindungsstelle passt und diese blockieren kann. Es könnte das Partner-Molekül verdrängen und EpCAM würde wirkungslos bleiben.

Neben der Suche nach neuen Hemmstoffen haben die Forscher auch bereits bekannte Medikamente im Blick. Deren Wirksamkeit wollen sie durch eine Kombinationstherapie unterstützen. Dafür planen sie, neben den gängigen therapeutischen Antikörpern Hemmstoffe der EpCAM Aktivierung einzusetzen, die gezielt gegen EpCAM gerichtet sind. So wollen Gires und Niessing das Tumor-Protein gewissermaßen mit einem „Doppelschlag“ in seiner Wirkung hemmen.

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit rund 200.000 Euro. Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Kontaktdaten der Projektleiter:

Professor Olivier Gires
Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde der Ludwig-Maximilians-Universität (LMU) München
Tel.: +49-89-7095-3895
E-Mail: olivier.gires@med.uni-muenchen.de
Dr. Dierk Niessing
Helmholtz Zentrum München, Institut für Strukturbiologie
Tel.: +49-89-3187-2176
E-Mail: niessing@helmholtz-muenchen.de
Web: http://www.helmholtz-muenchen.de/en/stb/research-group-niessing/

Sylvia Kloberdanz | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Erkenntnisse zur Schlaganfall-Rehabilitation: Entspannung besser als Laufbandtraining?
19.09.2019 | Universität Greifswald

nachricht Forscher entwickeln "Landkarte" für Krebswachstum
19.09.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics