Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multiple Sklerose mit Ultraschall noch besser erforschen

30.05.2005


Wissenschaftler präsentieren neues Verfahren in "Neuroimage"


Bei der Multiplen Sklerose dringen Entzündungszellen ins Gehirn ein. Das ist der entscheidende Schritt dafür, dass im Verlauf dieser Krankheit Hirngewebe zerstört wird. Wissenschaftler von der Uni Würzburg verfügen über ein neues Ultraschallverfahren, mit dem sie nicht nur diese unerwünschte Einwanderung von Zellen, sondern generell die Entstehung der Krankheit noch besser erforschen können.

Mit ihrer bildgebenden Methode haben die Forscher von der Neurologischen Klinik bereits diejenigen Moleküle sichtbar gemacht, die für das Eindringen der Entzündungszellen ins Gehirn verantwortlich sind. Dies gelang ihnen am Tiermodell der "experimentellen autoimmunen Enzephalomyelitis", einer Erkrankung, die als Modell für die Erforschung der Multiplen Sklerose dient.


Möglich wurde dieser Fortschritt durch die Zusammenarbeit mit der Ultraschallentwicklungsabteilung der Schering AG (Berlin). Dabei entstand ein neuartiges Ultraschall-Kontrastmittel, in dem Antikörper an winzige, luftgefüllte Bläschen gekoppelt sind. "Die Antikörper erkennen krankheitsrelevante Moleküle, setzen sich an ihnen fest und markieren sie mit den Bläschen. Diese können wir dann durch Ultraschall sichtbar machen", erklärt der Neurologe Mathias Mäurer.

Die Ergebnisse dieser experimentellen Studie wurden jetzt im US-Fachjournal "Neuroimage" veröffentlicht. Die neue Technologie sei im Hinblick auf die molekulare Ultraschall-Bildgebung bei entzündlichen Erkrankungen des Zentralen Nervensystems als Meilenstein zu bewerten, sagt der Würzburger Forscher. Die von ihm geleitete Arbeitsgruppe will das Verfahren jetzt zur Abbildung von krankheitsrelevanten Molekülen weiter nutzbar machen. Langfristig soll hierdurch das Wissen über die Entstehung der Multiplen Sklerose vermehrt werden.

Bildgebende Verfahren zielten früher vor allem darauf ab, die Anatomie von Gewebestrukturen möglichst genau wiederzugeben. Heute stehen andere Ziele im Vordergrund: Beim so genannten "Molecular Imaging" geht es darum, einzelne Moleküle - zum Beispiel Proteine - oder Stoffwechselvorgänge im Gewebe sichtbar zu machen.

Die Anforderungen an solche Verfahren sind hoch. Die Methoden müssen sehr empfindlich und zielgenau sein sowie eine möglichst große räumliche Auflösung liefern. Vor allem aber müssen sie den Forschern die Möglichkeit geben, die Bildsignale zu quantifizieren, also beispielsweise eine bestimmte Sorte von Molekülen nicht nur sichtbar zu machen, sondern auch ihre Menge exakt zu bestimmen. Den Würzburger Neurologen zufolge erfüllt das neue Ultraschallverfahren all diese Anforderungen.

Reinhardt M., Hauff P., Linker R.A., Briel A., Gold R., Rieckmann P., Becker G., Toyka K.V. Mäurer M., Schirner M.: "Ultrasound derived imaging and quantification of cell adhesion molecules in experimental autoimmune encephalomyelitis (EAE) by Sensitive Particle Acoustic Quantification (SPAQ)", Neuroimage 2005, online publiziert am 17. Mai 2005.

Weitere Informationen: PD Dr. Mathias Mäurer, T (0931) 201-23534, Fax (0931) 201-23535, E-Mail: Maeurer_M@klinik.uni-wuerzburg.de

Hinweis für Redaktionen/Journalisten: Ein pdf-File mit der Originalarbeit können Sie bei der Pressestelle der Uni anfordern, T (0931) 31-2401, E-Mail: emmerich@zv.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Molekül Multiple Sklerose Ultraschall

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics