Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Apparativer Tastbefund mit Magnetresonanz-Elastographie

28.05.2001


UKBF entwickelt erweiterte Diagnostik von Krankheitsprozessen in Geweben


In der Abteilung für Medizinische Informatik des Fachbereichs Humanmedizin der FU Berlin/Universitätsklinikum Benjamin Franklin (UKBF) wird seit knapp zwei Jahren eine Methode weiterentwickelt, um erstmals die Bestimmung der Elastizität von tiefer im Körper gelegenen Strukturen mit Hilfe der Kernspintomographie (Magnetresonanz-Tomographie, MRT) zu ermöglichen. Laut Projektleiter Dr. Jürgen Braun liegen die Anwendungsmöglichkeiten vor allem in der Diagnose und Charakterisierung von Hirn- und Brusttumoren sowie von entzündlichen und nekrotischen Prozessen. Weitere Anwendungsmöglichkeiten eröffnen sich für Untersuchungen von Muskeln und Prostata. Längerfristig könnten so die üblichen Gewebe-Entnahmen (Biopsien) entfallen.

Eine der ältesten Methoden ärztlicher Diagnostik ist die Palpation, das Ertasten von Verhärtungen oder Erweichungen von Gewebe. Veränderungen der Gewebe-Elastizität deuten auf krankhafte Prozesse hin. Manuelle Tastbefunde sind auch heute noch ein wichtiger Teil der ärztlichen Praxis. Doch es bestehen zwei entscheidende Beschränkungen:

Der Arzt kann nur feststellen, d a s s etwas "nicht in Ordnung ist", meist aber nicht genau, w a s es ist (zum Beispiel ein gutartiger oder ein bösartiger Tumor).
Tiefliegende oder durch knöcherne Strukturen abgeschirmte Gewebe, wie zum Beispiel krankhafte Veränderungen im Gehirn, können manuell nicht erfasst werden.
Der klassische, manuelle Tastbefund wird daher seit längerem durch technische Verfahren ergänzt, zu denen Ultraschall (Sonographie) und die MRT gehören.
Die Sonographie liefert zweidimensionale Bilder mit relativ schwacher Ausleuchtung, schwachem Bildkontrast und beschränkter räumlicher Auflösung. Immerhin konnten kürzlich erste Ergebnisse beim Aufspüren von Brustkrebs mit der "Ultraschall-Elastographie" erzielt werden. Dagegen bietet die Kernspintomographie die Möglichkeit, auch tiefere Schichten in beliebiger Raumrichtung abzubilden. Doch die biomechanischen Eigenschaften von Geweben können damit bislang nicht sichtbar gemacht werden.
Man müsste die MRT "nur noch" mit den Vorteilen der Palpation verknüpfen, also ein "Apparatives Abtasten" entwickeln. Genau darum - also um die Darstellung der Elastizität - geht es bei dem UKBF-Projekt.

Bei der "Dynamischen Magnetresonanz-Elastographie" (MRE) versetzt Jürgen Braun mit seiner Arbeitsgruppe Gewebe in Schwingungen. Dazu werden außen am Körper geeignete mechanische oder piezoelektrische Anregungseinheiten angesetzt. Diese "Stempel" übertragen mechanische Schwingungen mit einer Frequenz zwischen 100-300 Hertz auf das Gewebe. Die Auslenkungen betragen dabei lediglich einige hundertstel Millimeter. Zur Aufnahme wird ein zeitlich veränderliches Magnetfeld mit der mechanischen Schwingungsübertragung synchronisiert. Die Anregung des Gewebes dauert einige Sekunden bei einer Gesamtaufnahmedauer eines MRT-Bildes von 20 Sekunden. Das so aufgenommene Bild gibt die Elastizitätsunterschiede und damit mögliche krankhafte Veränderungen im untersuchten Gewebe wieder.

In "Phantomstudien" konnte gezeigt werden, dass die Magnetresonanz-Elastographie funktioniert. Dazu wurden Gele benutzt, deren biomechanische Eigenschaften denen von Gewebe vergleichbar sind. Zudem wurden wichtige theoretische Grundlagen und eine physikalische Modellierung der MRE entwickelt, mit deren Hilfe alle Auswertungen der Experimente sowie der Simulationen künftiger Untersuchungen vorgenommen werden können.
In Kürze beginnen nun Untersuchungen am "lebenden Objekt". Dr. Braun schätzt, dass die Methode in ein bis zwei Jahren an Patienten angewendet werden kann.
Bis dahin werden unter anderem Maßeinheiten (Elastizitätsskalen) für unterschiedliche Gewebetypen erstellt, an denen sich der Arzt orientieren kann (ähnlich wie bei Laborwerten). In Zukunft - so die Hoffnung der UKBF-Forscher - könnte der Arzt somit an Hand des mit der dynamischen MRE aufgenommenen Bildmaterials beispielsweise schnell und zuverlässig zwischen gut- und bösartigen Gewebeveränderungen unterscheiden - und dies mit einer gesundheitlich unbedenklichen, nichtinvasiven Technik.

Ansprechpartner:
Dr. Jürgen Braun
Fachbereich Humanmedizin der FU / UKBF
Institut für Medizinische Informatik, Biometrie und Epidemiologie
Abteilung Medizinische Informatik
Hindenburgdamm 30, 12200 Berlin
Tel.: (030) 8445-4506,-4510
E-Mail: braun@medizin.fu-berlin.de

Dipl.Pol. Justin Westhoff, UKBF- | idw
Weitere Informationen:
http://www.medizin.fu-berlin.de/medinf/
http://www.mwm-vermittlung.de/

Weitere Berichte zu: Gewebe MRE MRT Magnetresonanz-Elastographie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Erkenntnisse zur Schlaganfall-Rehabilitation: Entspannung besser als Laufbandtraining?
19.09.2019 | Universität Greifswald

nachricht Forscher entwickeln "Landkarte" für Krebswachstum
19.09.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics