Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herz: Wenn der "Stent" nur kurz hilft

12.01.2004


Herzspezialisten der Universität Bonn haben herausgefunden, welche Zellen dafür verantwortlich sind, dass sich verengte Kranzgefäße nach der Behandlung oft schnell wieder verschließen. Schon jetzt kann eine neue Generation von Gefäßstützen (so genannte Stents) die Rückfallquote deutlich reduzieren: Die Stents geben über Monate hinweg Wirkstoffe ab, die verhindern, dass sich an der Gefäßinnenwand Narbengewebe bildet. Die Bonner Ergebnisse erklären erstmals genau, wo diese Präparate angreifen. Damit eröffnen sie neue Perspektiven, die Wiederverschluss-Rate weiter zu reduzieren.


Dieser Stent ist noch nicht einmal so dick wie ein Bleistift.



"Ein Stent ist im Prinzip ein zylinderförmiger Drahtkäfig, der die Herzkranzgefäße offen halten soll", erklärt der Bonner Internist und Kardiologe Professor Dr. Gerhard Bauriedel. "Von der Leiste aus führt man einen Ballon-Katheter unter lokaler Narkose zur Engstelle und bläst ihn dort auf. Dadurch wird der Engpass gesprengt und gleichzeitig die Stütze vor Ort verankert." Nach 30 Minuten ist die Behandlung beendet. "Den meisten Patienten geht es dann rasch besser." Doch trotz Stent kann sich an derselben Stelle binnen weniger Monate ein neuer Engpass ausbilden; bei jedem dritten Patienten beobachten die Mediziner ein halbes Jahr nach dem Eingriff eine derartige Restenose.

... mehr zu:
»Blutstrom »Stent


Ballonkatheter und Stent verursachen nämlich Wunden an der Gefäßinnenwand, die vernarben können. Bislang vermutete man, dass dabei Zellen aus der Arterienwand zum Stent wandern, sich dort vermehren und zusätzlich spezielle Proteine absondern, die die Ader nach und nach verschließen. Professor Bauriedel hat nun mit seinen Mitarbeitern Alexander Jabs, Dirk Skowasch und René Andrié im Tierexperiment nachgewiesen, dass eine ganz andere Zellgruppe eine viel wichtigere Rolle spielt: Schon nach wenigen Tagen siedeln sich nämlich bestimmte Zellen aus dem Blutstrom auf der geschädigten Gefäßoberfläche an. Diese "dendritischen" Zellen werden zunächst im Knochenmark gebildet und gelangen dann in den Blutkreislauf. Die verletzte Ader scheint sie richtiggehend zur Hilfe zu rufen. "Wir vermuten, dass sie sich dort in Bindegewebszellen umwandeln und so das Narbengewebe bilden", vermutet Bauriedel; "gleichzeitig produziert die Gefäßwand bestimmte Substanzen, die dafür sorgen, dass die "Reparatur"-Zellen länger überleben und nicht vom Blutstrom weggeschwemmt werden."

Paradigmenwechsel für die Arteriosklerose-Forschung

Als die Ergebnisse im September 2003 veröffentlicht wurden, stießen sie in der Fachwelt auf enorme Resonanz; kürzlich wurde Bauriedel für seinen Entdeckung sogar mit dem Förderpreis der Hans und Gertie Fischer-Stiftung ausgezeichnet. Dass es auch skeptische Stimmen gab, wundert den Bonner Forscher nicht: "Bisher galt: Gefäßwand-Zellen erzeugen die Narbe. Unsere Idee, Zellen aus dem Blutstrom könnten statt dessen die erneute Verengung verursachen, bedeutet nicht weniger als einen Paradigmenwechsel für die Arterioskleroseforschung."

Brandaktuelle klinische Ergebnisse geben seiner Theorie Rückenwind. Eine neue Generation von Stents kann nämlich die erneute Verengung der Ader in vielen Fällen verhindern. Dazu wird eine Gefäßstütze mit einem Kunststoffpolymer beschichtet, in das verschiedene wachstumshemmende Wirkstoffe eingebettet sind (so genannte "drug eluting" Stents). Nach der Implantation werden die Medikamente lokal freigesetzt und verhindern über Monate hinweg, dass sich an der verletzten Ader eine Narbe bildet. Spätestens nach einem halben Jahr ist die Gefäßwand dann so gut verheilt, dass die Gefahr gebannt ist.

Befehl zum Selbstmord

Der genaue Wirkstoffcocktail ist bislang noch Alchemie. Die heute zugelassenen Stents enthalten unter anderem das Pilzgift Rapamycin. Nur 5 bis 10 Prozent aller Patienten bekommen damit noch einen Rückfall - warum genau, war bisher unklar. "Wir konnten jetzt nachweisen, dass die dendritischen Zellen einen Rezeptor für Rapamycin tragen, an den die Substanz andocken kann", so Bauriedel. "Damit scheint sie den Zellen den Befehl zum Selbstmord zu geben." Seine Hoffnung: Vielleicht können andere Medikamente die dendritischen Zellen noch wirksamer in den Tod treiben oder auch bei denjenigen Patienten eine erneute Verengung verhindern, denen ein Rapamycin-Stent nicht helfen konnte.

Ansprechpartner:

Professor Dr. Gerhard Bauriedel
Medizinische Klinik und Poliklinik II,
Universitätsklinikum Bonn
Telefon: 0228/287-5097 oder -6670
E-Mail: gerhard.bauriedel@ukb.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Blutstrom Stent

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Narkolepsie: Wissenschaftler entlarven den Übeltäter der rätselhaften Schlafkrankheit
20.09.2018 | Universitätsspital Bern

nachricht Virotherapie bei Bauchfellkrebs erfolgreich getestet - Neue biologische Krebstherapie
18.09.2018 | Universitätsklinikum Tübingen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics