Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Materialoberflächen Zellgemeinschaften steuern

08.07.2016

Von der Natur inspiriert: Materialwissenschaftler der Uni Jena nutzen strukturierte Oberflächen, um medizinische Implantate sicherer zu machen

ie Zahl der medizinischen Implantate wächst. Allein in Deutschland werden Jahr für Jahr fast eine viertel Million Hüftendoprothesen und zehntausende von Blutgefäßprothesen implantiert.


Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren.

Was den Betroffenen auf der einen Seite ein Plus an Lebensqualität beschert, birgt auf der anderen Seite jedoch nach wie vor Risiken: „Heutige Implantatmaterialien, wie Polymere und Metalle, können unerwünschte Nebenwirkungen im menschlichen Organismus verursachen“, sagt Prof. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena und nennt als Beispiele das Auftreten von Blutgerinnseln oder Infektionen.

Medizinische Implantate sicherer zu machen, ist ein Ziel des Materialwissenschaftlers Jandt und seines Teams, dem die Forscher nun mit zwei aktuellen Studien einen Schritt nähergekommen sind. Im Fachmagazin „Colloids and Surfaces B – Biointerfaces“ berichten die Jenaer Forscher, wie sie Polymeroberflächen so verändern können, dass diese die Anhaftung von Blutplättchen und damit die unerwünschte Blutgerinnung wesentlich reduzieren (doi:10.1016/j.colsurfb.2016.05.022).

Darüber hinaus zeigen sie, wie sich Oberflächen von Titanimplantaten modifizieren lassen, um das Riskio eines Bewuchses mit gefährlichen Krankheitserregern zu reduzieren (doi:10.1016/j.colsurfb.2016.05.049).

Blutgefäßprothesen bestehen heute vorwiegend aus Dacron, einem Polyester-Polymer oder Teflon. „Weil Blut dazu neigt, im Kontakt mit diesen Materialoberflächen zu gerinnen, besteht die Gefahr, dass sich die künstlichen Blutgefäße mit Blutgerinnseln verschließen, was lebensbedrohlich sein kann“, erläutert Prof. Jandt. Um die Anhaftung von Blutplättchen auf den künstlichen Oberflächen zu verringern, haben sich die Wissenschaftler von der Natur inspirieren lassen.

„In natürlichen Blutgefäßen wird die Blutgerinnung u. a. dadurch unterdrückt, dass die Zellen, mit denen die Gefäße ausgekleidet sind, eine typische dreidimensionale Form aufweisen und etwas aus der Gefäßoberfläche herausragen.“ Diese natürliche Form diente den Materialwissenschaftlern als Vorbild für die Oberfläche eines neuen künstlichen Blutgefäßes.

Wie sie in der nun vorgelegten Untersuchung zeigten, weist diese im Vergleich zu einer herkömmlichen unstrukturierten Polymeroberfläche eine um etwa 80 Prozent geringere Anhaftung von Blutplättchen auf. Mit Computersimulationen zeigten die Materialwissenschaftler weiter, dass die durch die Blutströmung verursachten Scherspannungen (d. h. Strömungskräfte) auf den bioinspirierten Oberflächen für diese reduzierte Anhaftung von Blutplättchen verantwortlich sind.

„Wir hoffen, damit eine wichtige Grundlage für neue Gefäßprothesen gelegt zu haben“, kommentiert Prof. Jandt diese Ergebnisse, die in Zusammenarbeit mit dem Universitätsklinikum Jena und dem Institut für Bioprozess- und Analysenmesstechnik e. V. in Heilbad Heiligenstadt entstanden.

Auch beim Verständnis von Infektionen an metallischen Titanimplantaten sind die Materialwissenschaftler der Uni Jena einem bioinspirierten Ansatz gefolgt. So schützt sich eine Reihe von Tieren gegen die Besiedelung durch Mikroorganismen, indem ihre Haut mikroskopisch kleine Strukturen aufweist, die die Anhaftung von Bakterien durch physikalische Kräfte verhindern. Solche Strukturen, wie sie etwa auf der Haut von Haien oder den Flügeln von Libellen vorkommen, haben die Forscher vereinfacht auf das Implantatmaterial Titan übertragen.

Wie sie gemeinsam mit Kollegen vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. (HKI) in ihrer nun veröffentlichten Arbeit belegen, lässt sich dadurch die Anhaftung von Mikroorganismen rein physikalisch um mehr als die Hälfte reduzieren.

Original-Publikationen:
Pham TT et al. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.022;
Lüdecke C et al. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730,
E-Mail: K.Jandt[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Stephan Laudien | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Oberflächeneigenschaften für holzbasierte Werkstoffe
14.08.2018 | INNOVENT e.V. Technologieentwicklung Jena

nachricht Europaweit einzigartiges Forschungszentrum geht an den Start
14.08.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics