Wie Materialoberflächen Zellgemeinschaften steuern

Jenaer Forschern ist es gelungen, Polymeroberflächen von künstlichen Blutgefäßen so zu verändern, dass sie die Anhaftung der Blutplättchen und damit die Blutgerinnung wesentlich reduzieren.

ie Zahl der medizinischen Implantate wächst. Allein in Deutschland werden Jahr für Jahr fast eine viertel Million Hüftendoprothesen und zehntausende von Blutgefäßprothesen implantiert.

Was den Betroffenen auf der einen Seite ein Plus an Lebensqualität beschert, birgt auf der anderen Seite jedoch nach wie vor Risiken: „Heutige Implantatmaterialien, wie Polymere und Metalle, können unerwünschte Nebenwirkungen im menschlichen Organismus verursachen“, sagt Prof. Klaus D. Jandt von der Friedrich-Schiller-Universität Jena und nennt als Beispiele das Auftreten von Blutgerinnseln oder Infektionen.

Medizinische Implantate sicherer zu machen, ist ein Ziel des Materialwissenschaftlers Jandt und seines Teams, dem die Forscher nun mit zwei aktuellen Studien einen Schritt nähergekommen sind. Im Fachmagazin „Colloids and Surfaces B – Biointerfaces“ berichten die Jenaer Forscher, wie sie Polymeroberflächen so verändern können, dass diese die Anhaftung von Blutplättchen und damit die unerwünschte Blutgerinnung wesentlich reduzieren (doi:10.1016/j.colsurfb.2016.05.022).

Darüber hinaus zeigen sie, wie sich Oberflächen von Titanimplantaten modifizieren lassen, um das Riskio eines Bewuchses mit gefährlichen Krankheitserregern zu reduzieren (doi:10.1016/j.colsurfb.2016.05.049).

Blutgefäßprothesen bestehen heute vorwiegend aus Dacron, einem Polyester-Polymer oder Teflon. „Weil Blut dazu neigt, im Kontakt mit diesen Materialoberflächen zu gerinnen, besteht die Gefahr, dass sich die künstlichen Blutgefäße mit Blutgerinnseln verschließen, was lebensbedrohlich sein kann“, erläutert Prof. Jandt. Um die Anhaftung von Blutplättchen auf den künstlichen Oberflächen zu verringern, haben sich die Wissenschaftler von der Natur inspirieren lassen.

„In natürlichen Blutgefäßen wird die Blutgerinnung u. a. dadurch unterdrückt, dass die Zellen, mit denen die Gefäße ausgekleidet sind, eine typische dreidimensionale Form aufweisen und etwas aus der Gefäßoberfläche herausragen.“ Diese natürliche Form diente den Materialwissenschaftlern als Vorbild für die Oberfläche eines neuen künstlichen Blutgefäßes.

Wie sie in der nun vorgelegten Untersuchung zeigten, weist diese im Vergleich zu einer herkömmlichen unstrukturierten Polymeroberfläche eine um etwa 80 Prozent geringere Anhaftung von Blutplättchen auf. Mit Computersimulationen zeigten die Materialwissenschaftler weiter, dass die durch die Blutströmung verursachten Scherspannungen (d. h. Strömungskräfte) auf den bioinspirierten Oberflächen für diese reduzierte Anhaftung von Blutplättchen verantwortlich sind.

„Wir hoffen, damit eine wichtige Grundlage für neue Gefäßprothesen gelegt zu haben“, kommentiert Prof. Jandt diese Ergebnisse, die in Zusammenarbeit mit dem Universitätsklinikum Jena und dem Institut für Bioprozess- und Analysenmesstechnik e. V. in Heilbad Heiligenstadt entstanden.

Auch beim Verständnis von Infektionen an metallischen Titanimplantaten sind die Materialwissenschaftler der Uni Jena einem bioinspirierten Ansatz gefolgt. So schützt sich eine Reihe von Tieren gegen die Besiedelung durch Mikroorganismen, indem ihre Haut mikroskopisch kleine Strukturen aufweist, die die Anhaftung von Bakterien durch physikalische Kräfte verhindern. Solche Strukturen, wie sie etwa auf der Haut von Haien oder den Flügeln von Libellen vorkommen, haben die Forscher vereinfacht auf das Implantatmaterial Titan übertragen.

Wie sie gemeinsam mit Kollegen vom Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V. (HKI) in ihrer nun veröffentlichten Arbeit belegen, lässt sich dadurch die Anhaftung von Mikroorganismen rein physikalisch um mehr als die Hälfte reduzieren.

Original-Publikationen:
Pham TT et al. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.022;
Lüdecke C et al. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids and Surfaces B: Biointerfaces (2016) doi:10.1016/j.colsurfb.2016.05.049

Kontakt:
Prof. Dr. Klaus D. Jandt
Otto-Schott-Institut für Materialforschung der Friedrich-Schiller-Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730,
E-Mail: K.Jandt[at]uni-jena.de

http://www.uni-jena.de

Media Contact

Stephan Laudien idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Industrie-4.0-Lösung für niedrigschwelligen Zugang zu Datenräumen

»Energizing a Sustainable Industry« – das Motto der Hannover Messe 2024 zeigt klar, wie wichtig eine gleichermaßen leistungsstarke und nachhaltige Industrie für den Fertigungsstandort Deutschland ist. Auf der Weltleitmesse der…

Quantenpräzision: Eine neue Art von Widerstand

Physikforschende der Universität Würzburg haben eine Methode entwickelt, die die Leistung von Quantenwiderstands-Normalen verbessern kann. Sie basiert auf einem Quantenphänomen namens anomaler Quanten-Hall-Effekt. In der industriellen Produktion oder in der…

Sicherheitslücke in Browser-Schnittstelle erlaubt Rechnerzugriff über Grafikkarte

Forschende der TU Graz waren über die Browser-Schnittstelle WebGPU mit drei verschiedenen Seitenkanal-Angriffen auf Grafikkarten erfolgreich. Die Angriffe gingen schnell genug, um bei normalem Surfverhalten zu gelingen. Moderne Websites stellen…

Partner & Förderer