Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord-Material macht aus Wärme Elektrizität

15.11.2019

Ein neuartiges Material erzeugt aus Temperaturunterschieden sehr effizient elektrischen Strom. Damit können sich Sensoren und kleine Prozessoren kabellos selbst mit Energie versorgen.

Thermoelektrische Materialien können Wärme direkt in elektrische Energie umwandeln. Das liegt am sogenannten Seebeck-Effekt: Wenn zwischen den beiden Enden eines solchen Materials ein Temperaturunterschied besteht, wird elektrische Spannung generiert und Strom kann fließen.


Prof. Ernst Bauer im Labor

TU Wien

Wie viel elektrische Energie bei einer gegebenen Temperaturdifferenz gewonnen werden kann, wird mit Hilfe des sogenannten ZT-Wertes gemessen: Je höher der ZT-Wert eines Materials ist, umso besser sind seine thermoelektrischen Eigenschaften. Beste bisherige Thermoelektrika kamen auf ZT-Werte von etwa 2,5 bis 2,8.

An der TU Wien gelang es nun, ein völlig neues Material zu entwickeln, mit einem ZT-Wert von 5 bis 6. Es handelt sich dabei um eine dünne Schicht aus Eisen, Vanadium, Wolfram und Aluminium, aufgetragen auf einem Silizium-Kristall.

Das neue Material ist so effektiv, dass man es in Zukunft verwenden könnte, um Sensoren oder auch kleine Computerprozessoren mit Energie zu versorgen. Anstatt kleine elektrische Geräte an Kabeln anzuschließen, könnten sie ihren eigenen Strom aus Temperaturdifferenzen generieren. Im Fachjournal „Nature“ wurde es nun erstmals präsentiert.

Elektrizität und Temperatur

„Ein gutes thermoelektrisches Material muss einen großen Seebeck-Effekt besitzen und daneben zwei Anforderungen erfüllen, die schwer miteinander vereinbar sind“, sagt Prof. Ernst Bauer vom Institut für Festkörperphysik der TU Wien.

„Einerseits soll es elektrischen Strom möglichst gut leiten; andererseits soll aber Wärme möglichst schlecht transportiert werden.“ Das ist eine Herausforderung, denn gewöhnlich hängen elektrische Leitfähigkeit und Wärmeleitfähigkeit eng miteinander zusammen.

Am Christian-Doppler-Labor für Thermoelektrizität, das Ernst Bauer 2013 an der TU Wien eröffnete, wurde in den letzten Jahren intensiv an unterschiedlichen thermoelektrischen Materialien für unterschiedliche Einsatzzwecke gearbeitet. Und dabei stieß man nun auf ein ganz besonders bemerkenswertes Material – eine Kombination aus Eisen, Vanadium, Wolfram und Aluminium.

„Die Atome in diesem Material sind normalerweise streng regelmäßig angeordnet, in einem sogenannten flächenzentrierten kubischen Gitter“, sagt Ernst Bauer. „Der Abstand zwischen zwei Eisenatomen ist immer gleich groß, dasselbe gilt für die anderen Atomsorten. Der ganze Kristall ist daher völlig regelmäßig aufgebaut.“

Wenn man das Material allerdings als dünne Schicht auf Silizium aufträgt, passiert etwas Erstaunliches: Die Struktur verändert sich radikal. Zwar bilden die Atome auch auf Silizium immer noch ein kubisches Muster, allerdings mit raumzentrierter Anordnung. Daher ist die Verteilung der unterschiedlichen Atomsorten nun völlig zufällig.

„Da können zwei Eisenatome nebeneinandersitzen, die Plätze daneben sind von Vanadium oder Aluminium besetzt, und es gibt keine Regel mehr, die vorschreibt, an welchen Orten im Kristall wieder das nächste Eisenatom zu finden ist“, erklärt Bauer.

Durch diese Mischung aus Regelmäßigkeit und Unregelmäßigkeit der Atomanordnung verändert sich auch die elektronische Struktur, die bestimmt, wie sich Elektronen im Festkörper bewegen.

„Die elektrische Ladung bewegt sich dann auf eine andere Weise durch das Material, sodass sie von Streuprozessen geschützt ist. Man spricht hier von sogenannten Weyl-Fermionen“, sagt Ernst Bauer.

Auf diese Weise erreicht man einen sehr geringen elektrischen Widerstand. Gitterschwingungen hingegen, die die Wärme von Orten hoher zu Orten niedriger Temperatur transportieren, werden durch diese Unregelmäßigkeiten im Kristallaufbau gestört.

Die Wärmeleitfähigkeit sinkt. Das ist wichtig, wenn aus einem Temperaturunterschied dauerhaft elektrische Energie gewonnen werden soll – denn wenn Temperaturunterschiede sehr schnell ausgeglichen werden könnten, hätte bald das gesamte Material überall dieselbe Temperatur und der thermoelektrische Effekt käme zum Erliegen.

Strom für das „Internet of Things“

„Eine derart dünne Schicht kann natürlich keine beliebig großen Energiemengen generieren – aber dafür ist sie extrem kompakt und anpassungsfähig“, sagt Ernst Bauer. „Wir wollen damit eine Energieversorgung für Sensoren und kleine elektronische Anwendungen ermöglichen.“

Der Bedarf dafür wird immer größer: Im „Internet of Things“ werden unterschiedlichste Geräte online miteinander verknüpft, damit sie ihr Verhalten automatisch aufeinander abstimmen. Besonders zukunftsträchtig ist das in großen Produktionsanlagen, wo eine Maschine dynamisch auf den Zustand der anderen reagieren soll.

„Wenn man in einer Fabrik eine große Anzahl an Sensoren benötigt, kann man die nicht alle verkabeln, das würde irgendwann ein unüberblickbares Chaos ergeben“, meint Bauer. „Viel klüger ist es, wenn sich die Sensoren ganz von selbst mit Energie versorgen, etwa über ein kleines, effizientes thermoelektrisches Element, dass die Abwärme einer Maschine nutzt. Damit kann auch gleich ein kleiner Prozessor betrieben werden, der die Daten auswertet und dann per WLAN zur zentralen Steuereinheit schickt.“

Genau diesen Markt soll das neue thermoelektrische Material nun voranbringen. Die Forschungsarbeiten finden im Rahmen des Christian-Doppler-Labors für Thermoelektrizität an der TU Wien statt. Unternehmenspartner ist die Firma AVL Graz, wissenschaftliche Partner das „National Institute of Material Science, NIMS“, Japan und der „Chinese Academy of Sciences“, China. Gemeinsam mit dem Unternehmenspartner wurden bereits zwei Patente eingereicht – mit Unterstützung der Forschungs- und Transfersupports der TU Wien.

Wissenschaftliche Ansprechpartner:

Prof. Ernst Bauer
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8–19; 1040 Wien
T +43-1-58801-13160
ernst.bauer@tuwien.ac.at

Originalpublikation:

B. Hinterleitner et al., Thermoelectric performance of a metastable thin-film Heusler alloy, Nature (2019). https://www.nature.com/articles/s41586-019-1751-9

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Simulation-Experiment-Kombination erlaubt tiefere Einblicke in ultraschnelle lichtinduzierte Prozesse
13.02.2020 | Technische Universität Graz

nachricht Dank neuer Erkenntnisse bald Supraleitung bei Raumtemperatur?
04.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics