Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Topologische Isolatoren - Neue Hoffnungsträger für die Computertechnologie

28.06.2012
Streit um Topologische Isolatoren: Wissenschaftler weisen die Stabilität ihrer Oberflächenzustände nach. Damit erheben sie die neue Materialklasse zum Hoffnungsträger der Computertechnologie.

Topologische Isolatoren sind eine neue, vor wenigen Jahren entdeckte Materialklasse. Ihre herausragende Eigenschaft besteht darin, im Inneren elektrisch isolierend zu sein, an der Oberfläche bilden sie jedoch leitende Zustände aus. Das Besondere an topologischen Isolatoren ist die extreme Stabilität ihrer Oberflächenzustände.


Spektren einer Drittel-Atomlage Eisen auf Bismutselenid. Die sich kreuzenden Linien zeigen den Oberflächenzustand. Oberer und unterer Teil der Abbildung sind symmetrisch zueinander aufgrund der Zeitumkehrsymmetrie, die auch den Kreuzungspunkt schützt.
Abbildung: HZB/Rader

Wissenschaftler vom Helmholtz-Zentrum Berlin (HZB) haben nun in Bismutselenid, dem derzeit bekanntesten topologischen Isolator, den Oberflächenzustand auch noch nach Beschichten der Oberfläche mit Eisen beobachtet. Bisher gingen Wissenschaftler davon aus, dass die Stabilität an Kontaktstellen zu magnetischen Materialien verloren geht. Eine solche Grenzfläche aus topologischem Isolator und Ferromagnet ist für die Entwicklung neuer Speichermedien in der Computerindustrie von großem Interesse. Die Erkenntnis hat Markus Scholz aus der Abteilung Magnetisierungsdynamik des HZB im Rahmen seiner Doktorarbeit gewonnen und jetzt im Fachjournal Physical Review Letters veröffentlicht (DOI: 10.1103/PhysRevLett.108.256810).

Topologische Isolatoren verdanken die Stabilität ihrer Oberflächenzustände einem grundlegenden physikalischen Prinzip, der Zeitumkehrsymmetrie. Danach gelten physikalische Gesetze in gleicher Weise, auch wenn die Zeit rückwärts laufen würde. Auf die Bewegung von Elektronen in einem Festkörper angewandt heißt das, dass die Naturgesetze zum Tragen kommen, egal ob sich ein Elektron von links nach rechts oder – nach Zeitumkehr – von rechts nach links bewegt. Dabei gilt: Wenn ein Elektron in eine bestimmte Richtung läuft, zum Beispiel nach links, muss ihm ein Zustand mit nach oben gerichtetem Spin zur Verfügung stehen. Ein entgegengesetzt laufendes Elektron benötigt dann einen Zustand mit nach unten gerichtetem Spin.

In den topologischen Isolatoren ist diese Kopplung von Bewegungsrichtung und Spin so stark, dass die Elektronen an der Oberfläche stets gezwungen sind, zur Leitung von elektrischem Strom zur Verfügung zu stehen. Die leitfähigen Oberflächenzustände sind dadurch geschützt.

Anders verhält es sich in ferromagnetischen Materialien: Dort ist die Spinrichtung durch magnetischen Nord- und Südpol festgelegt. Die Zeitumkehrsymmetrie ist hier gebrochen. Bringt man beide Materialien – Ferromagneten und topologischen Isolator – in Kontakt, so sollte sich die Symmetriebrechung des Ferromagneten auf den topologischen Isolator übertragen. Er müsste, so die bisherige Annahme, auch an seiner Oberfläche isolierend werden. Das HZB-Team um Markus Scholz hat jetzt das Gegenteil nachgewiesen.

„Nach der Entdeckung der topologischen Isolatoren herrschte zunächst große Euphorie“, sagt Markus Scholz: „Die Materialklasse war der große Hoffnungsträger in der Computertechnologie. Dann setzte sich die Annahme durch, dass ein topologisch geschützter Zustand – wie der Oberflächenzustand von Bismutselenid – extrem empfindlich auf magnetische Materialien reagieren soll – und das war eine große Enttäuschung.“ Denn für Anwendungen in Computerbauteilen, wie neuen Speichermedien, ist es von enormer Bedeutung, dass der Oberflächenzustand auch in unmittelbarer Nähe eines magnetischen Materials stabil bleibt.

Scholz hat nun die Ehre der neuen Materialien gerettet: Dafür stellte der Wissenschaftler zunächst frische, saubere Bruchkanten des Kristalls Bismutselenid her – mit Hilfe von Klebeband, wie Scholz beschreibt: „Bismutselenid ist aus struktureller Sicht eher zweidimensional. Das heißt, auf fünf Atomlagen, die sehr kräftig gebunden sind, folgt eine mit schwacher Bindung. Dort reißt der Kristall beim Abziehen des Klebebands ab.“ Die frische Bruchkante hat das Team dann hauchdünn mit Eisen überzogen. Scholz: „So etwas ganz sauber und nach höchsten Standards zu machen, damit hat unsere Arbeitsgruppe sehr große Erfahrung.“

Anschließend untersuchten die Wissenschaftler die beschichtete Kristalloberfläche mit einer extrem oberflächenempfindlichen Messmethode, der winkelaufgelösten Photoemissionsspektroskopie (ARPES). „Damit können wir zwar nur ein bis zwei Atomlagen tief in die Probe schauen – sehen aber extrem genau, was dort gerade passiert“, so Dr. Jaime Sánchez-Barriga, Koautor der Studie. Das Ergebnis: Bismutselenid zeigt seine topologischen Oberflächenzustände auch nach der Beschichtung mit Eisen. „Damit sind neue Forschungsanstrengungen gerechtfertigt, Bismutselenid für Anwendungen in der Computerforschung weiter zu entwickeln“, sagt Sánchez-Barriga: „Denkbar sind beispielsweise magnetische Transistoren.“

Die HZB-Forscher werden Gelegenheit haben, diese Forschung weiter voranzutreiben. Die Deutsche Forschungsgemeinschaft hat gerade bekannt gegeben, dass sie ein Schwerpunktprogramm zu topologischen Isolatoren einrichten wird, in dem ungefähr fünfundzwanzig bis dreißig Forschergruppen gefördert werden sollen. Koordiniert wird dieses Programm von Dr. Oliver Rader, der auch die Doktorarbeit von Markus Scholz betreut hat.

Hintergrund:
Topologische Isolatoren wurden im Jahr 2005 postuliert und werden inzwischen in vielen Experimenten beobachtet. In der Mathematik beschäftigt sich die Topologie mit Größen, die unter kontinuierlicher Veränderung konstant bleiben. Ein Beispiel ist ein Knoten, den man an einem Seil verschieben, aber nicht lösen kann, zumindest sofern die Enden fest sind. Seile mit und ohne Knoten bezeichnet man dann als topologisch verschieden. Auch Elektronen können in bestimmten Fällen solche topologischen Eigenschaften haben. Die 2005 entdeckte feste Kopplung von Spin und Bewegungsrichtung ist ein Beispiel für eine solche Verknotung. Ob ein magnetisches Material in der Lage ist, diese Verknotung zu lösen, das ist Gegenstand der aktuellen Untersuchung.
Kontakt:
Markus Scholz
Abteilung Magnetisierungsdynamik
Tel.: +49 (0)30-8062-12950
markus.scholz@helmholtz-berlin.de
Priv.-Doz. Dr. Oliver Rader
Abteilung Magnetisierungsdynamik
Tel.: +49 (0)30-8062-12950
rader@helmholtz-berlin.de
Pressestelle:
Hannes Schlender
Abteilung Kommunikation
Tel.: +49 30 8062-42414
Fax: +49 30 8062-42998
hannes.schlender@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de
http://prl.aps.org/abstract/PRL/v108/i25/e256810

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Nylon as a building block for transparent electronic devices?
19.08.2019 | Max-Planck-Institut für Polymerforschung

nachricht Nylon als Baustein für transparente elektronische Geräte?
19.08.2019 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verschränkte Zeit der Quantengravitation

Die Theorien der Quantenmechanik und der Gravitation sind dafür bekannt, trotz der Bemühungen unzähliger PhysikerInnen in den letzten 50 Jahren, miteinander inkompatibel zu sein. Vor kurzem ist es jedoch einem internationalen Forschungsteam von PhysikerInnen der Universität Wien, der Österreichischen Akademie der Wissenschaften sowie der Universität Queensland (AUS) und dem Stevens Institute of Technology (USA) gelungen, wichtige Bestandteile der beiden Theorien, die den Verlauf der Zeit beschreiben, zu verbinden. Sie fanden heraus, dass die zeitliche Abfolge von Ereignissen echte Quanteneigenschaften aufweisen kann.

Der allgemeinen Relativitätstheorie zufolge verlangsamt die Anwesenheit eines schweren Körpers die Zeit. Das bedeutet, dass eine Uhr in der Nähe eines schweren...

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

GAIN 2019: Das größte Netzwerktreffen deutscher Wissenschaftlerinnen und Wissenschaftler startet in den USA

22.08.2019 | Veranstaltungen

Künstliche Intelligenz auf der MS Wissenschaft

22.08.2019 | Veranstaltungen

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

GAIN 2019: Das größte Netzwerktreffen deutscher Wissenschaftlerinnen und Wissenschaftler startet in den USA

22.08.2019 | Veranstaltungsnachrichten

Künstliche Intelligenz auf der MS Wissenschaft

22.08.2019 | Veranstaltungsnachrichten

Experiment HADES simuliert die Kollision und das Verschmelzen von Sternen: 800 Milliarden Grad in der kosmischen Küche

22.08.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics