Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstheilende Kupferschichten sorgen für Innovationssprung bei der Herstellung von Smartphones

12.11.2013
Wie ein Nervensystem verbinden elektronische Leiterplatten die Bauteile von Smartphones.

Strom und Abwärme werden dort über komplexe, dreidimensionale Kupferbahnen geleitet. Die Herstellung dieser hauchdünnen Kupferverbindungen auf großflächigen Leiterplatten ist anspruchsvoll.


Die Titanklammer links mit herkömmlicher Abnutzung und rechts mit selbstheilender Kupferbeschichtung. Foto: Universität des Saarlandes

Ein entscheidender Innovationssprung ist dabei Saarbrücker Materialwissenschaftlern um Professor Frank Mücklich gelungen. Mit einer selbstheilenden Kupferschicht, die dünner als ein Zehntel einer Haaresbreite ist, konnten sie das Verkupfern der Leiterplatten wesentlich erleichtern. Für diese patentierte Erfindung wurden den Forschern in Hamburg der Innovationspreis 2013 des Deutschen Kupferinstitutes verliehen.

„Damit Smartphones immer flacher und leistungsfähiger werden, müssen auch ihre elektronischen Bauelemente schrumpfen und auf filigrane Weise miteinander vernetzt werden. Eine elektronische Leiterplatte ist heute ein äußerst komplexes, dreidimensionales Gebilde“, sagt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes und Leiter des Steinbeis-Forschungszentrums für Werkstofftechnik (MECS).

Für die großflächige und präzise Fertigung von Leiterplatten wird das Galvanik-Verfahren genutzt. Die Leiterplatte wird dabei in eine kupferhaltige Säure, den Elektrolyt, getaucht. Dann fließt extrem starker elektrischer Strom durch die Platte und transportiert das Kupfer auf die Oberfläche und in winzige Bohrlöcher, die für spätere Bauteile und Kontakte vorgesehen sind.

„Die Leiterplatte wird dadurch mit einer gleichmäßigen Kupferschicht überzogen, die dünner ist als ein Zehntel des Durchmessers eines menschlichen Haares“, erklärt der Materialforscher.

Die Leiterplatten werden dabei von säureresistenten Titanklammern gehalten, die den Strom auf die Platte leiten. „Diese Halterungen müssen eine enorme elektrische Energie auf wenigen Quadratmillimetern aushalten. Der extrem starke Strom schädigt sie bei jedem Durchlauf durch Funkenbildung, ähnlich wie ein Blitzeinschlag“, beschreibt Frank Mücklich das grundsätzliche Problem von modernen Galvanik-Anlagen. Gemeinsam mit den Materialwissenschaftlern Dominik Britz und Christian Selzner untersuchte er die Schädigungsvorgänge nicht nur im Elektronenmikroskop, sondern mit Hilfe von Tomographen auch in Nanodimensionen und sogar auf atomarer Ebene. „Wir mussten dabei erkennen, dass die bisherige Strategie nicht zum Erfolg führt. Es reicht nicht, immer neue Werkstoffe mit noch höherer Widerstandskraft gegen diese zerstörerischen, viele tausend Grad heißen Funken zu entwickeln“, erläutert Mücklich. Denn auch sehr teure Edelmetalle wie Platin konnten diesen Prozess letztlich nur verzögern, aber nicht aufhalten. Stattdessen fanden die Materialforscher ein äußerst sparsames und zuverlässiges Verfahren. „Dieses ähnelt der Heilung von Wunden, mit der unser Körper zeitlebens die Haut regeneriert“, vergleicht Frank Mücklich.

Wie in einem Karussell wandern die Kontakte jetzt in der Produktionsanlage im Kreis herum und werden genauso wie die Leiterplatten immer wieder mit einer neuen dünnen Kupferschicht überzogen. „Damit erzeugen wir eine recycelbare Verschleißschicht auf den Kontakten, heilen aufgetretene Schäden sofort aus und verbessern ganz nebenbei sogar die Leitfähigkeit der Halterungen um ein Vielfaches“, sagt der Materialforscher. Durch das neue Verfahren müssen die Halterungen in Zukunft nicht mehr aufwändig in den Produktionsstätten ausgebaut und ersetzt werden. Da in jeder der rund 600 Produktionsanlagen weltweit etwa 200 Halterungen im Einsatz sind, spart der Hersteller jetzt jährlich mehrere Millionen Euro. Professor Mücklich kann sich vorstellen, dass sich die selbst erneuernden Schutzschichten nach diesem Prinzip auch für andere Anwendungen einsetzen lassen. „Wenn Bauteile während der Produktion stark beansprucht werden, sollte man nicht nur über Hightech-Werkstoffe wie Titan nachdenken, sondern auch vergleichsweise alte, aber nicht weniger geeignete Materialien wie Kupfer oder Kupferlegierungen in die Überlegungen einbeziehen“, sagt Mücklich.

Für ihre Materialanalysen nutzen die Saarbrücker Wissenschaftler verschiedene dreidimensionalen Verfahren, um zum Beispiel die so genannte Elektroerosion an den Werkstoffen, die durch starke Stromflüsse ausgelöst wird, zu bewerten. „Wir haben dafür hoch auflösende Elektronenmikroskope sowie die Nano-Tomographie und Atomsonden-Tomographie eingesetzt. Die dabei erfassten Bildserien werden anschließend im Computer wieder zum exakten räumlichen Abbild zusammengefügt – bis hin zum einzelnen Atom“, erläutert Professor Mücklich. Bei der Suche nach robusten Materialien setzen die Wissenschaftler auch das Laserstrahlauftragsschweißen (Lasercladding) ein, um in mikroskopischen Lagen verschiedene Materialien auf einen Werkstoff aufzutragen. Außerdem bearbeiten die Saarbrücker Wissenschaftler Materialoberflächen mit dem so genannten Laserinterferenz-Verfahren, um Werkstoffe zum Beispiel härter und widerstandsfähiger zu gestalten.

Hintergrund: Innovationspreis des Deutschen Kupferinstituts

Der Innovationspreis des Deutschen Kupferinstituts wird jedes Jahr für ein neues Verfahren verliehen, das die deutsche Kupferindustrie im internationalen Wettbewerb voranbringt. Professor Frank Mücklich erhielt den Innovationspreis gemeinsam mit seinen wissenschaftlichen Mitarbeitern Dominik Britz und Christian Selzner für ihren „wegweisenden Beitrag für die Entwicklung innovativer Produkte aus Kupfer und Kupferlegierungen“, so die Jury. Der mit 2.500 Euro dotierte Innovationspreis wurde auf der Jahrestagung des Deutschen Kupferinstituts in Hamburg verliehen.

Fragen beantwortet:

Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).
Weitere Informationen:
http://www.uni-saarland.de/fuwe
http://www.mec-s.de
http://www.kupferinstitut.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de/pressefotos

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Recyclingfähige, formflexible Wasserstofftanks für Brennstoffzellen-Autos
21.09.2018 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Neuer Super-Kunststoff mit positiver Ökobilanz
18.09.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hygiene im Handumdrehen – mit neuem Netzwerk „CleanHand“

Das Fraunhofer FEP beschäftigt sich seit Jahrzehnten mit der Entwicklung von Prozessen und Anlagen zur Reinigung, Sterilisation und Oberflächenmodifizierung. Zur Bündelung der Kompetenzen vieler Partner wurde im Mai 2018 das Netzwerk „CleanHand“ zur Entwicklung von Systemen und Technologien für saubere Oberflächen, Materialien und Gegenstände ins Leben gerufen. Als Partner von „CleanHand“ präsentiert das Fraunhofer FEP im Rahmen der Messe parts2clean, vom 23.-25. Oktober 2018, in Stuttgart, am Stand der Fraunhofer-Allianz Reinigungstechnik (Halle 5, Stand C31), das Netzwerk sowie aktuelle Forschungsschwerpunkte des Institutes im Bereich Hygiene und Reinigung.

Besonders um die Hauptreisezeiten gehen vermehrt Testberichte und Studien über die Reinheit von europäischen Raststätten, Hotelbetten und Freibädern durch die...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hygiene im Handumdrehen – mit neuem Netzwerk „CleanHand“

25.09.2018 | Biowissenschaften Chemie

Robotik für den Menschen

25.09.2018 | Informationstechnologie

Synthetische Kraftstoffe: 3D-Druck soll Effizienz steigern und Kosten senken

25.09.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics