Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schäden an und in Drahtseilen erkennen, bevor es zu Störungen oder sogar Unfällen kommt

06.09.2017

Neues Forschungsprojekt: Wissenschaftler des BIBA an der Universität Bremen und Prüftechnikspezialisten aus der Industrie entwickeln neuartiges Überwachungssystem für den mobilen und stationären Einsatz zur automatischen Detektion von Schäden an und in Drahtseilen

Fahrstuhl- und Seilbahnkabinen, Bergbahnen, Befahranlagen wie die an Windenergieanlagen, sogar ganze Brücken hängen an Drahtseilen. Reißen sie, zum Beispiel wegen Brüchen oder Korrosion, kann das zu schweren Unfällen führen. Daher werden die Seile regelmäßig durch Sachverständige kontrolliert – im Wesentlichen per Sichtprüfung der Seiloberfläche.


Stahlseil auf Seilwinde: Frisches Fett ist goldgelb. Wird es schwarz, liegt das hauptsächlich an den Stahlpartikeln, die sich durch den Abrieb darin sammeln.

Foto: Marco Lewandowski, BIBA


Hoch oben auf einer Offshore-Windenergieanlage: Ein gut gesicherter Techniker prüft den Durchmesser eines Stahlseils.

Foto: MEB-Services

Nun entwickeln das BIBA – Bremer Institut für Produktion und Logistik an der Universität Bremen und der Bremer Prüftechnikspezialist MEB-Services ein neuartiges, automatisches Drahtseilüberwachungssystem, das mithilfe intelligenter Verfahren Defekte am sowie im Seil erkennt und bewertet.

„Entwicklung eines Systems zur automatischen Detektion von Schäden an einem Drahtseil“ (MOBISTAR) heißt das zweijährige Forschungsprojekt. Es hat einen Gesamtumfang von gut einer halben Million Euro und wird vom Bundesministerium für Wirtschaft und Energie im Rahmen des "Zentralen Innovationsprogramms Mittelstand" (ZIM) mit knapp 400.000 Euro gefördert. Das Vorhaben wurde mithilfe des Kooperations-Netzwerkes InTeWIND - Innovationen und Technologien für Windenergieanlagen und Leichtbau initiiert.

Zunächst für Seile mit einem Durchmesser von bis zu 40 Millimetern

Das Prüfsystem soll auf Basis eines neuen Mess- und Auswerteverfahrens arbeiten und zur spontanen sowie zur kontinuierlichen Überwachung von Seilen mit einem Durchmesser von bis zu 40 Millimetern dienen. Zunächst konzentrieren sich die MOBISTAR-Forschungen jedoch auf Seile mit Durchmessern von 8 bis 10 Millimetern. Sie werden überwiegend zum Heben von Lasten oder zum Personentransport eingesetzt. „Im Anschluss an das Projekt ist eine Weiterentwicklung des Systems auf ein größeres Spektrum an Seildurchmessern angedacht“, sagt BIBA-Wissenschaftler Stephan Oelker.

Das System MOBISTAR wird für den Einsatz an Seilwinden und Befahranlagen innerhalb von Windenergieanlagen konzipiert und wird sowohl mobil als auch stationär zu verwenden sein. Als mobile Einheit unterstützt es zum Beispiel Sachverständige bei ihren Prüfungen. Als stationäre Einheit dient es der dauerhaften Überwachung der Seile. Das System soll auch während des Betriebes der Seile schadhafte Stellen wie Risse, Brüche, Quetschungen, Korrosion oder Knicke erkennen können und muss daher auch bei höheren Geschwindigkeiten schnell präzise Ergebnisse liefern.

Bewertung der Seile kann mithilfe des Prüfsystems zeitnah und automatisch erfolgen
„Mit dem MOBISTAR-System lässt sich ein Seil in seiner äußeren und inneren Struktur prüfen. Besonders bei äußerer Sichtprüfung nicht festzustellende Mängel im Seilinneren können so künftig erkannt werden. Die Bewertungen der Seile kann mithilfe des Prüfsystems zeitnah und automatisch erfolgen“, sagt Oelker.

Für die Mesungen: Magnetinduktionsverfahren sowie neue Sensoren und optische Verfahren

Ein Herzstück des Systems ist die Sensoreinheit. Sie fährt das Drahtseil entlang, nimmt Messungen vor und übermittelt die Daten an einen Rechner, wo die MOBISTAR-Software sie sammelt, verarbeitet, analysiert und eine Bewertung über die aktuelle Qualität des Stahlseiles liefert. So ermöglicht das System eine lückenlose Dokumentation des Seilzustandes. Auch aus der Ferne werden sich die Daten auslesen lassen.

Für die Messungen setzen die Projektpartner neben Magnetinduktionsverfahren auch auf neue Sensoren und optische Verfahren. Mit dem Magnetinduktionsverfahren lassen sich insbesondere Brüche im Seil detektieren. Die optischen Verfahren geben Aufschlüsse unter anderem zu Veränderungen der Seilquerschnitte und zu Oberflächendefekten. „Das Zusammenspiel bewährter Messverfahren mit modernster Sensortechnik und intelligenten Komponenten erlaubt tiefe Einblicke in das geprüfte Material und detaillierte Auswertungen mit vielfältigen Analysen. Dafür bedarf es im Hintergrund einer komplexen Software mit neuartigen Algorithmen zur Erkennung von Schäden am Seil. Auch diese werden in dem Projekt entwickelt“, sagt Oelker.

Die Bedingungen vor Ort stellen die Projektpartner BIBA und MEB noch vor einige Herausforderungen. „Das Sensorsystem muss bei Umgebungstemperaturen zwischen minus 20 und plus 60 Grad Celsius zuverlässig arbeiten und für die rauen Bedingungen zum Beispiel auf Offshore-Windenergieanlangen schock- und stoßfest ausgeführt sein“, erklärt Oelker. „Es muss teils großen mechanischen Beanspruchungen standhalten. Auch Schmutz, Verunreinigungen und Wasser oder Salzwasser sowie Öle und Fette dürfen die Messungen und Auswertungen nicht beeinflussen.“

„Mehr Sicherheit bei gleichzeitiger Kostenreduktion“

Trotz hoher Erfahrungswerte der Sachverständigen und obwohl diese im Zweifel sicherheitshalber eher zu früh ein Auswechseln der Drahtseile empfehlen: Eine Prognose zum Seilverhaltens ist immer mit Unsicherheiten verbunden. „Um höchste Sicherheitsstandards zu gewährleisten, werden Drahtseile heute vielfach ausgetauscht, bevor optisch irgendwelche Schäden erkennbar sind oder tatsächlich welche bestehen. Die hohe Unsicherheit über die Qualität der Stahlseile treibt die Kosten in die Höhe. Besonders kostenträchtig ist es, wenn sich plötzlich Schäden zeigen und dann ungeplant Seile ausgewechselt werden müssen“, weiß Fritz Mahrholz, Geschäftsführer von MEB-Services.

Der Prüfexperte hat früher selbst viele Jahre als Monteur „am Seil gehangen und gearbeitet“ und dabei stets auf die Expertisen der Gutachter vertraut. „Aber es geht noch sicherer“, meint Mahrholz. „Indem wir bei den Prüfungen künftig auch in die Seile hineinschauen und bei Bedarf mittels permanenter Kontrolle stets aktuelle Messwerte erhalten. So können wir noch mehr Sicherheit gewährleisten – und das bei gleichzeitiger Kostenreduktion.“

Dazu Oelker: „Durch MOBISTAR wird erstmals eine automatische Überwachung mit mehr und genaueren Informationen zum Zustand von Drahtseilen möglich. Damit trägt unser System zur Umsetzung des Industrie-4.0-Ansatzes bei.“ Im Juni 2019, so die Planung, werden die Partner ihre Projektergebnisse vorstellen.

Achtung Redaktionen:
Fotos zur Pressemitteilung finden Sie unter (www.biba.uni-bremen.de/press2017.html) oder erhalten sie über Sabine Nollmann (Mobil: 0170 904 11 67 oder E-Mail: mail@kontexta.de)

Ihre Ansprechpartner:
Prof. Dr.-Ing. Michael Freitag, Telefon: 0421 218-500 02, E-Mail: fre@biba.uni-bremen.de
Dipl.-Wi.-Ing. Stephan Oelker, Telefon: 0421 218-50 130, E-Mail: oel@biba.uni-bremen.de
Fritz Mahrholz, Telefon: 0421 69 10 70-82, E-Mail: fmahrholz@meb-services.eu

Weitere Informationen:

http://www.biba.uni-bremen.de
http://www.meb-services.eu

Sabine Nollmann | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: BIBA Drahtseil Korrosion Logistik Seile Sensoren Sichtprüfung optische Verfahren

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund
22.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?
22.06.2018 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics